EUDS Mi Universidad

SUPERNOTA

Nombre del Alumno: Andi Saydiel Gómez Aguilar

Nombre del tema:

- 1. Transcripción y procesamiento de la información genética
- 2. Síntesis y degradación de proteínas
- 3. Tráfico intracelular de las proteínas

Parcial: II

Nombre de la Materia: Biología Molecular

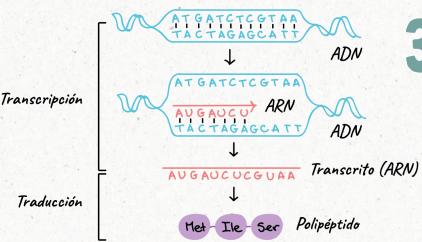
Nombre del profesor: Dr. Daniel Amador Javalois

Nombre de la Licenciatura: Licenciatura en Medicina Humana.

Semestre: IV

Lugar y Fecha de elaboración: Tapachula, Chiapas a 20 de Abril del 2025

TRANSCRIPCIÓN Y PROCESAMIENTO DE LA INFORMACIÓN GENÉTICA


DEFINICION

La transcripción es el proceso mediante el cual la información genética del ADN se copia en una molécula de ARN mensajero (ARNm). Es el primer paso para la

expresión génica.

PROCESAMIENTO DEL PRE-MRNA:

Incluye la adición de una caperuza en el extremo 5', la poliadenilación en el extremo 3' y el corte y empalme (splicing) para eliminar intrones y unir exones, generando un mRNA maduro listo para la traducción.

ETAPAS DE LA **TRANSCRIPCION**

- Iniciación:
- Reconocimiento del promotor por la ARN polimerasa.
 - Formación del complejo cerrado, luego del complejo abierto tras la apertura del ADN.

Elongación:

La ARN polimerasa complementarios ribonucleótidos molde de ADN.

Terminación:

- En procariotas puede ser intrínseca (estructura en horquilla + uracilos) o dependiente de Rho.
 - En eucariotas depende de señales específicas de terminación.

SÍNTESIS Y DEGRADACIÓN DE PROTEÍNAS

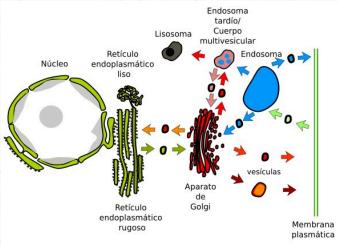
SINTESIS

LUGAR: RIBOSOMAS DEL CITOPLASMA

- Iniciación:
- Unión del ARNm a la subunidad ribosomal menor.
- Acoplamiento del primer RNAt (Metionina) al codón de inicio AUG.
- Elongación:
- Entrada de nuevos aminoácidos mediante RNAt.
- Formación de enlaces peptídicos catalizada por la peptidil transferasa.
- Translocación del ribosoma sobre el ARNm.
- Terminación:
- (UAA. UGA) Codones de paro UAG. reconocidos por factores de liberación.

DEGRADACION

proteínas defectuosas necesarias son marcadas con ubiquitina y dirigidas al proteasoma para su degradación. Este proceso regula la concentración de proteínas y elimina aquellas que podrían ser perjudiciales para la célula.

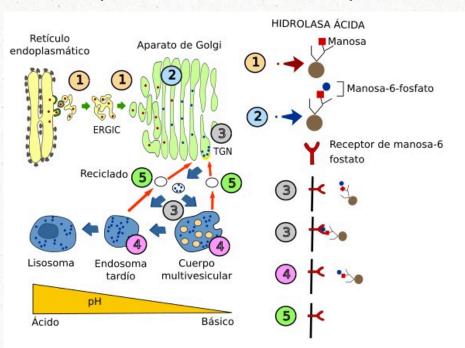

FUNCIONES:

- Regula factores de transcripción,
- Controla el ciclo celular,
- Participa en la respuesta inmune,
- acumulación proteínas Evita de defectuosas.

TRÁFICO INTRACELULAR DE LAS PROTEÍNAS

Proceso mediante el cual las proteínas recién sintetizadas se transportan a su destino celular (membrana, organelos, secreción).

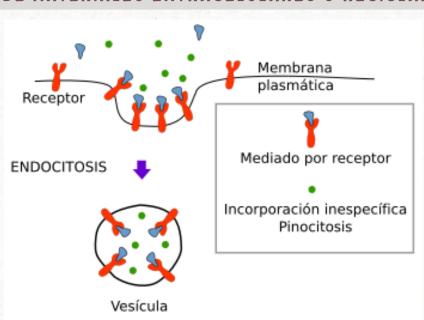
VÍA SECRETORA (RER → GOLGI → VESÍCULAS → EXTERIOR O MEMBRANA)


 Proteínas con péptido señal son dirigidas al retículo endoplasmático rugoso.

 Del RER se transportan al aparato de Golgi para modificaciones (glicosilación, etc.).

 Luego, empaquetadas en vesículas de transporte.

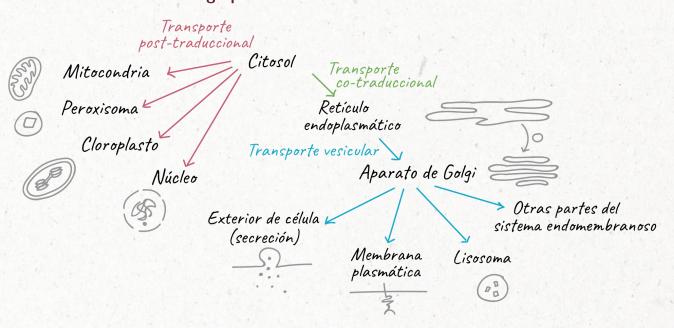
VÍA LISOSOMAL


Algunas proteínas llevan etiquetas como manosa-6-fosfato para ser enviadas a lisosomas.

RUTAS DE RETORNO Y RECICLAJE (ENDOCITOSIS)

Las vesículas que llegan del exterior pueden fusionarse con endosomas y luego con lisosomas.

FUNCION: INTERNALIZACIÓN DE MATERIALES EXTRACELULARES O RECICLAJE DE RECEPTORES.



Endocitosis mediada por receptores

- Moléculas extracelulares se unen a sus receptores específicos en la membrana plasmática.
- Se forman vesículas recubiertas de clatrina que llevan el contenido a endosomas tempranos.
- El material puede:
 - Ser reciclado de regreso a la membrana (ej. receptores de transferrina).
 - Dirigido a endosomas tardíos → lisosomas para degradación.

SEÑALIZACIÓN PARA ORGANELOS INTERNOS (NÚCLEO, MITOCONDRIAS, PEROXISOMAS)

Cada organelo tiene señales específicas que actúan como "códigos postales" para dirigir proteínas sintetizadas en el citosol.

REFERENCIAS BIBLIOGRAFICAS

Nájera Mijangos H. (2024). *Planeacion de Biología Molecular*. Obtenido de UDS: https://plataformaeducativauds.com.mx/assets/docs/libro/LMH/344f286a7745b342 39925d506584a1a1-LC-LMH406-1%20BIOLOGIA%20MOLECULAR.pdf

Lodish, H., Berk, A., Kaiser, C. A., Krieger, M., Bretscher, A., Ploegh, H., Martin, K. C., Yaffe, M. B., & Amon, A. (2017). *Biología celular y molecular* (9.ª ed.). Editorial Médica Panamericana.