EUDS Mi Universidad

Nombre del Alumno : Rubí Yadelin Santiago Lanza

Nombre del trabajo: Cuestionarios

Parcial: 2

Nombre de la Materia: Biomatemáticas

Nombre del profesor: Daniel Amador Javalois

Nombre de la Licenciatura: Medicina humana

Semestre: 2. Grupo: A

Cuadro 1. Clasificación de la obesidad según OMS					
Clasificación	IMC (kg/m2)	Riesgo asociado a la salud			
Normo Peso	18,5 - 24,9	Promedio			
Exceso de Peso	> 25	Aumentado			
Sobrepeso	25 - 29,9	Aumentado			
Obesidad Grado I o moderada	30 - 34,9	Aumento moderado			
Obesidad Grado II o severa	35 - 39,9	Aumento severo			
Obesidad Grado III o mórbida	> 40	Aumento muy severo			

OBESIDAD

CÁLCULO DEL IMC

·Nos sirve para evaluar si una persona tiene un peso saludable respecto a su estatura

·Se calcula dividiendo el peso en kilogramos por el cuadrado de la estatura en metros: peso actual (kg) ÷ altura (m) x altura (m) = kg/m2

GASOMETRIA ARTERIAL Y TRASTORNOS METABÓLICOS

 Una prueba de gasometría arterial mide la cantidad de oxígeno y dióxido de carbono en la sangre y muestra que tan bien mueven los pulmones el oxígeno en la sangre cuando inhalamos.

·Alcidosis: Estado en el que el pH de la sangre es más ácido de lo

normal (pH < 7,35) •Alcalosis: Estado en el que el pH de la sangre es más alcalino de lo normal (pH > 7,45). Tiene una mayor concentración de iones de hidróxido

Alteración Primaria	Alteración Primaria	pН	Alteración compensatoria	EB
ACIDOSIS METABÓLICA	HCO ₃ \$	1	pCO ₂	disminuido
ACIDOSIS RESPIRATORIA	pCO ₂ 1	1	HCO ₃	aumentado
ALCALOSIS METABÓLICA	HCO ₃ 1	1	bcos 🖡	aumentado
AICALOSIS RESPIRATORIA	pCO ₂ \$	1	нсо, 1	disminuido

TRASTORNO ÁCIDO-BASE	PH	HCO3-	pCO ₂	MECANISMO DE COMPENSACIÓN
Acidosis metabólica	Inferior a 7,35	Bajo	Bajo	Aumento de la frecuencia respiratoria (hiperventilación) para aumentar la eliminación de CO ₂
Alcalosis metabólica	Superior a 7,45	Alto	Alto	Disminución de la frecuencia respiratoria (hipoventilación) para disminuir la eliminación de CO ₂
Acidosis respiratoria	Inferior a 7,35	Alto	Alto Aumento, por parte de los rillones, de la retención de H excreción de ácido	
Alcalosis respiratoria	Superior a 7,45	Bajo	Bajo	Disminución, por parte de los riñones, de la retención de HCO ₃ . y de la excreción de ácido

 Trastorno ácido-base son condiciones que reflejan alteraciones en el equilibrio entre ácidos y bases en el organismo, lo que puede afectar el pH sanguíneo.

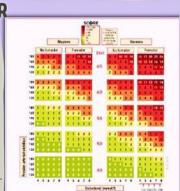
Formula:

Dosis solicitada por el medico X diluyente en (ml) presentación del medicamento (gr o mg)

Ejemplo

se solicitan 200 mg de ampicilina c/12 h La presentación de la ampicilina es 500 mg en 2 ml

500mg 2ML 200mg x 2ml = 400 = 0.8 ml 200mg x 500 mg 500


CÁLCULO Y APLICACIÓN DE DOSIS TERAPÉUTICAS

REGLA DE 3 APLICADA A LA DOSIFICACIÓN DE FÁRMACOS

·Se utiliza para realizar cálculos exactos para la administración de medicamentos y soluciones, nos sirve para evitar reacciones que puedan perjudicar debido a la concentración del fármaco

RIESGO CARDIOVASCULAR

- ·Factores biológicos no modificables: edad, sexo, genético, historia familiar
- -pueden aumentar el riesgo de padecer ciertas enfermedades
- -pueden influir en respuesta a tratamientos y medicamentos
- ·Factores biológicos metabólicos: tasa metabólica basal, metabolismos de carbohidratos, grasas y proteina, hormonas metabólicas
 - -Pueden influir en el peso y composición corporal
 - -Pueden afectar la energía y rendimiento físico
 - -Pueden aumentar riesgo de enfermedades
 - •Factores relacionados con el estilo de vida: dieta y nutrición, actividad física, tabaquismo, alcoholismo, estrés, exposición a sustancias tóxicas.
 - -Pueden aumentar el riesgo de enfermedades crónicas
 - -Pueden influir en la salud mental y bienestar emocional
 - -Afectan la calidad de vida

CÁLCULO Y DETERMINACIÓN DE LA PRESIÓN

Fórmula PAM= (Presión sistólica) + (Presión diastólica x 2) EJEMPLOT/A: 100/60 mmHg PAM= (100) + (60 x 2) =73.3 mmHg 3 VALORES NORMALES 70-105 mmHg

ARTERIAL MEDIA •Es importante para garantizar la perfusión adecuada de los órganos vitales: cerebro, corazón, riñones •Ayuda a regular el flujo sanguíneo en diferentes partes del cuerpo, asegurando que los órganos reciban la cantidad correcta de oxígeno y nutrientes •Puede reflejar presencia de enfermedades

CÁLCULO DE LÍQUIDOS Y PLANES DE HIDRATACIÓN

FACTORES A CONSIDERAR

- ·Las necesidades varian según la edad y peso
- ·Estado de hidratación, incluvendo
- deshidratación y sobrehidratación
- Varían según la enfermedad o condición del paciente
- ·Perdidas de líquidos: vómitos, diarrea,

sudoración excesiva

