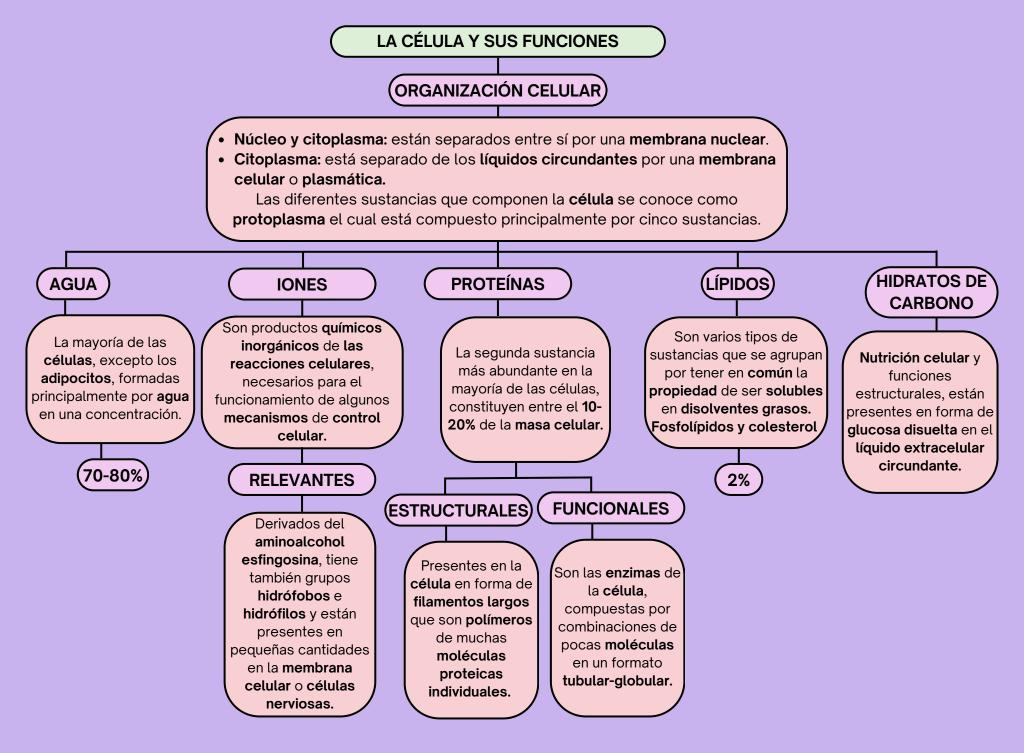
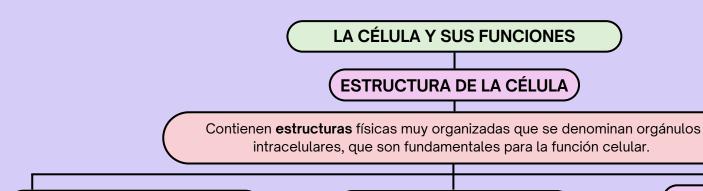


Licenciatura en Medicina humana

Nombre del alumno: Yahnisi Alejandra Alegría Hernández

Docente:


Dra. Karen Bolaños Pérez


Asignatura:

Fisiología

Actividad:

Mapa conceptual de la célula y sus funciones

ESTRUCTURA MEMBRANOSA

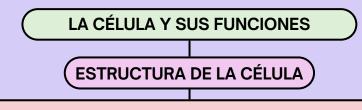
La mayoría de los orgánulos están cubiertos por membranas compuestas principalmente por lípidos y proteínas.

MEMBRANA CELULAR

Estructura elástica, fina y flexible que tiene un grosor de tan solo 7,5-10 nm. Formada por proteínas (25%) y lípidos (fosfolípidos 25%, 4% de otros lípidos y 3% de carbohidratos).

BARRERA LIPÍDICA

És una **película** fina de doble capa de lípidos donde se encuentran intercaladas grandes proteínas globulares.


Formada por fosfolípidos, esfingolípidos y colesterol

BARRERA BÁSICA

Formada por tres tipos de lípidos que son los fosfolípidos, esfingolípidos y colesterol, que Impide la penetración de sustancias hidrosolubles.

BARRERA MEDIA

Es impermeable a las sustancias hidrosolubles habituales, como iones, glucosa y urea. Pero las puede penetrar sustancias como Oxígeno, Dióxido de carbono y alcohol.

Contienen **estructuras** físicas muy organizadas que se denominan orgánulos intracelulares, que son fundamentales para la función celular.

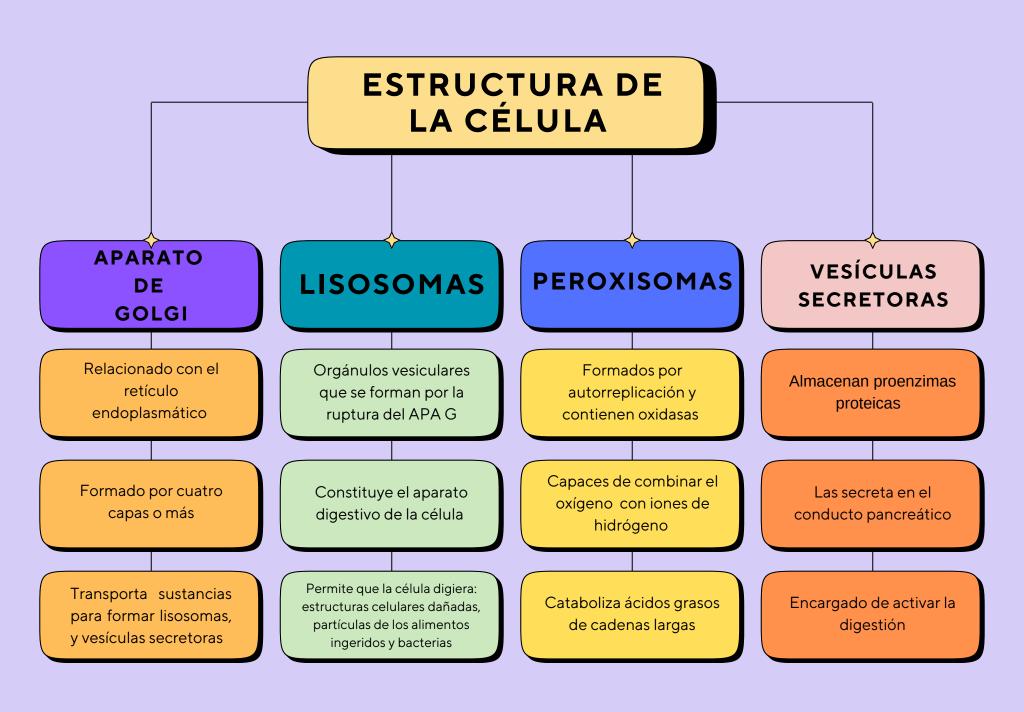
ESFINGOLÍPIDOS

Derivados del aminoalcohol esfingosina, tiene también grupos hidrófobos e hidrófilos y están presentes en pequeñas cantidades en la membrana celular o células nerviosas.

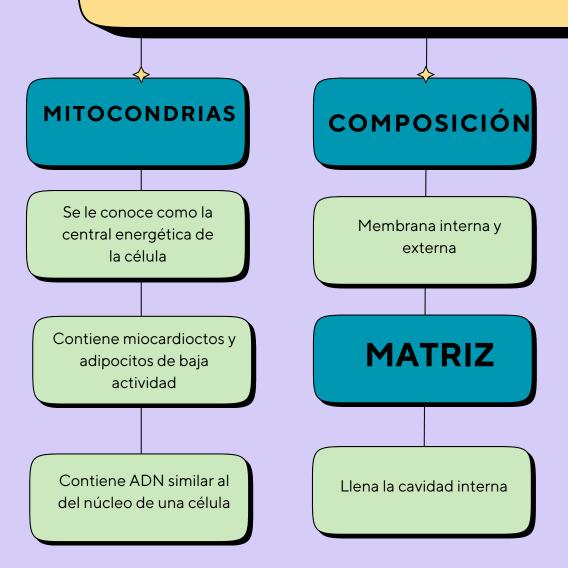
FUNCIONES

Protección frente a factores

perniciosos del entorno. La transmisión de señales. Sitios de adhesión para proteínas extracelulares


PORCIONES HIDRÓFILAS

Son de fosfato y constituyen entonces las dos superficies de la membrana celular completa que están en contacto con el agua intracelular en el interior de la membrana y con el agua extracelular en la superficie externa.


MOLÉCULAS DE COLESTEROL Son también lípidos, porque sus núcleo esteroides son muy liposolubles. PROTEÍNAS Integrales y periféricas Transportadoras HIDRATOS DE CARBONO

Glucocalíz

ESTRUCTURA DE LA CÉLULA

TRIFOSFATO DE ADENOSINA

Sustancia de alta energía

ESTRUCTURAS DE LA CÉLULA

CITOESQUELETO: Es una red de proteínas fibrilares organizadas habitualmente en filamentos o túbulos que se originan como proteínas precursoras sintetizadas por los ribosomas en el citoplasma.

CITOESQUELETO CÉLULAR

Tienen una forma de cuerda resistente y se coordina con los microtúbulos

Sus funciones son principalmente mecánicas

Actúa como citoesqueleto proporcionando estructuras físicas rígidas

NÚCLEO

Centro de control de la célula que envía mensajes a esta para que crezca y madure, se replique o muera

Contiene genes que controlan y promueven la reproducción de la célula

Se llevaba acabo la mitosis para formar dos células hijas

MEMBRANA NUCLEAR

Conocida como cubierta nuclear, consiste de dos membranas bicapas separadas, una dentro de la otra

Es la continuación del retículo endoplasmático del citoplasma celular

Los poros nucleares miden 9 nm de diámetro

NUCLÉOLOS Y FORMACIÓN DE RIBOSOMAS

Contienen una o más estructuras que se tiñen intensamente y se denomina nucléolos

No tiene una membrana limitante, es una acumulación de grandes cantidades de ARN y proteínas

Su formación comienza en el núcleo

COMPARACIÓN ENTRE LA CÉLULA ANIMAL Y LAS FORMAS DE VIDA PRECELULARES

SISTEMAS FUNCIONALES DE LA CÉLULA

ENDOCITOSIS

La mayoría de las sustancias atraviesan la membrana celular por los procesos de difusión y transporte activo

DUFISIÓN

Las sustancias se desplazan a través de los poros de la membrana celular, a través de la matriz lipídica de la membrana (liposolubles)

TRANSPORTE ACTIVO

Las partículas grandes entran en la célula mediante una función especializada de la membrana celular que se denomina endocitosis

PINOCITOSIS

Se produce continuamente en las membranas celulares de la mayoría de las células

RECEPTORES

Proteicos especializados er la superficie de la membrana que sin específicos del tipo de proteínas que se van a absorber

CLATRINA

Red de proteína fibrilar

VESÍCULA DE PINOCITOSIS

La porción invaginada de la membrana se rompe y se separa de la superficie de la célula

FAGOCITOSIS

Se produce de igual forma que la pinocitosis, implicando únicamente la participación de partículas grandes y no de moléculas

ORGANIZACIÓN

Es la intervención de los anticuerpos con los receptores de fagocitos y bacterias

ETAPAS

Unión de los receptores de la membrana con los ligandos de la superficie de la partícula

Evaginación del alrededor de la membrana para la unión a los ligandos de la partícula (Vesícula fagocítica cerrada)

La lactina rodea la vesícula fagocítica, se contrae y empuja la vesícula hacia el interior

Contracción del eje vesicular, separando la membrana celular, dejando la vesícula en el interior LOS LISOSOMAS DIGIEREN LAS SUSTANCIAS Extrañas i introducida por pinocitosis y Fagocitosis dendentro de la célula

> Se forma un vesícula digestiva dentro del citoplasma celular

CUERPO RESIDUAL

Representa las sustancias indigestibles

EXOCITOSIS

El cuerpo residual se excreta a través de la membrana celular

ORGÁNOS DIGESTIVOS

Vesículas introducidas por pinocitosis y fagocitosis que contienen lisosomas

LISOSOMA Y RETRACCIÓN DE LOS TEJIDOS Y AUTÓLISIS DE LAS CÉLULAS DAÑADAS

Retracción de los tejidos musculares tras periodos de inactividad prolongados

ELIMINACIÓN DE CÉLULAS DAÑADAS

Ruptura de lisosomas causadas por calor, frío o traumatismos.

AUTÓLISIS

Digestión de toda la célula en caso de ser un daño mayor

SUSTANCIAS BACTERICIDAS

- Lisozima
- Lisoferrina
- Ácido con un PH en torno a 5

SISTEMAS FUNCIONALES DE LA CÉLULA

AUTOFAGIA Y RECICLADO DE LOS ÓRGANULOS CELULARES

Proceso de limpieza para la degradación y reciclaje de orgánulos y agregados proteicos obsoletos

AUTOFAGOSOMAS

Se forman en el citosol

CONTRIBUCIONES

- Renovación rutinaria de los componentes citoplasmáticos
- Desarrollo tisular
- Supervivencia celular
- Mantenimiento de la homeostasis

SINTESIS DE ESTRUCTURAS CELULARES EN RER Y A. GOLGI

RETÍCULO ENDOPLÁSMICO

Se forman principalmente en las membranas de bicapas lipídicas similares a la membrana celular

SÍNTESIS DE PROTEÍNAS EN RER

Se sintetizan las moléculas proteicas en el interior de las estructuras de los ribosomas

Extruyen moléculas hacía el citosol y a través del retículo endoplásmico hacia la matriz endoplásmica

SÍNTESIS DE LÍPIDOS EN REL

Sintetiza lípidos, especialmente fosfolípidos y colesterol

VESÍCULAS DE TRANSPORTE

Evita que el retículo endoplásmico crezca más allá de las necesidades

OTRAS FUNCIONES DE RE

Proporciona las enzimas que controlan la escisión del glucógeno

Proporciona enzimas que son capaces de detoxificar las sustancias

SISTEMAS FUNCIONALES DE LA CÉLULA

FUNCIONES DEL A. GOLGI

- Procesado adicional de las sustancias
 Procesamiento hidratos de carbono
- POLÍMEROS DE SACÁRIDOS

ÁCIDO HIALURÓNICO

SULFATO DE CONDROITINA

FUNCIONES

Supone los principales componentes de los proteoglucanos en el moco

Compone la sustancia fundamental que actúa como relleno entre las fibras de colágeno y células

Son los componentes fundamentales de la matriz orgánica en el cartílago y el hueso

Son importantes en la migración y proliferación celular

PROCESAMIENTO DE LAS SECRECIONES ENDOPLÁSMICAS EN EL APARATO DE GOLGI: FORMACIÓN DE VESÍCULAS

Las proteínas son transportadas a través de los túbulos hacia porciones del retículo endoplásmico liso que están más cerca del AG

VESÍCULAS DE TRANSPORTE

Compuestas por pequeñas envolturas de retículo endoplásmicos liso se van escindiendo y difundiendo hasta la capa más profunda del AG

Sintetizan proteínas

CÉLULAR GLANDULAR

Puede detectar las moléculas proteicas recién formadas en el retículo endoplásmico rugoso en 3 a 5 min TIPOS DE VESÍCULAS FORMADAS POR EL Aparato de Golgi: Vesiculas secretoras y Lisosomas

Contienen proteínas que se deben secretar a través de la superficie de la membrana celular

EXOCITOSIS

Estimulado por la entrada de iones calcio en la célula

IONES CALCIO

Interaccionan con la membrana vesicular y provocan su fusión con la membrana celular USO DE VESÍCULAS INTRACELULARES PARA REPONER LAS MEMBRANAS CELULARES

Fusión con la membrana celular o de estructuras intracelulares, como la mitocondria y retículo endoplásmico

Metabólicamente intenso siendo capaz de formar nuevas estructuras intracelulares y sustancias secretoras

LA MITOCONDRIA EXTRAE ENERGÍA DE Los nutrientes

Alimentos que reaccionan químicamente con el oxígeno

- Hidratos de carbono
 - Grasas
 - Proteínas

GLUCOSA

Hidratos de carbono del cuerpo humano en el aparato digestivo y el hígado

AMINOÁCIDOS

Proteínas

ÁCIDOS GRASOS

Grasas

Todo esto se lleva acabo dentro de la mitocondria

CARACTERÍSTIAS FUNCIONALES DEL TRIFOSFATO DE ADENOSINA

ATP

Es un nucleótido compuesto por adenina, ribosa y tres radicales de fosfato

MONEDA ENERGÉTICA

CONDICIONES FÍSICAS Y QUÍMICAS DEL ORGANISMO

Enlace de alta energía

DIFOSFATO DE ADENOSINA

El ATP libera su energía provocando que se separe un radical del ácido fosfórico PROCESOS QUÍMICOS DE LA FORMACIÓN DEL ATP: FUNCIÓN DE LA MITOCONDRIA

GLUCÓLISIS

Al entrar en las células es convertida por los enzimas en el citoplasma en ácido pirúvico

El 95% de la formación del ATP celular tiene lugar en la mitocondria.

DERIVACIÓN DEL AP

- Hidratos de carbono
- Ácidos grasos de los lípidos
- Aminoácidos de las proteínas

ACETIL COENZIMA A

Conversión del AP en la matriz del mitocondrias

CICLO DE KREBS

Disolución del CoA por otra series de enzimas

DIVISIÓN EN SUS COMPONENTES

ÁTOMOS DE HIDRÓGENOS

Difunde fuera de la mitocondria y fuera de la célula, a través de los pulmones

DIÓXIDO DE CARBONO

Son reactivos, se combinan con el oxígeno y libera una cantidad tremenda de energía para convertir elevadas de ADP a ATP

ESPACIOS MEMBRANOSOS MITOCONDRIALES

Participación de numerosas enzimas proteicas

EPISODIO INICIAL

Eliminación de un electrón desde el átomo de hidrógeno para convertirse en un ion de hidrógeno

EPISODIO INICIAL

Combinación de iones hidrógeno con oxígeno para formar agua

ATP SINTETASA

Resultado de la fase terminal

Usa la energía para convertir el ADP en ATP

MECANISMO QUIMIOSMÓTICO

Formación de ATP

USO DEL ATP PARA LAS
FUNCIONES CELULARES

CATEGORÍAS PRINCIPALES

Transporte de sustancias
Síntesis de compuestos
químicos
Trabajo mecánico

USOS DEL ATP

- Suministrar energía para el transporte de sodio a través de la membrana celular
- Favorecer las síntesis proteica en los ribosomas
- Suministrar la energía necesaria durante la contracción muscular

PROCESOS ADICIONALES

- Sintetizar proteínas
 Fabricación celular de fosfolípidos, colesterol, pruinas, pirimidinas
- Suministrar energía para las células especiales para realizar trabajo mecánico

MOVIMIENTO CILIAR O AMEBIANO

• Trabajo mecánico muscular

CENTRAL ELECTRICA

Mitocondria

John E. Hall, & Michael E. Hall, (2021). Guyton y Hall Tratado de Fisiología Médica (14ª ed.). Elsevier, España.