

Mapa conceptual

Nombre del alumno: Alondra Elizabeth Trujillo morales

Parcial 1: fisiopatología

temas: integración de la función y replicación de la célula

Catedrático: Dr. Jose Daniel Estrada morales

Licenciatura: medicina Humana

Grado: 2do semestre

INTEGRACION DE LA FUNCIÓN Y REPLICACIÓN DE LA CÉLULA

COMUNICACIÓN CELULAR

intercambio de información entre células, que es fundamental para su crecimiento y funcionamiento normal.

RECEPTORES CELULARES

Los receptores celulares son proteínas que actúan como "antenas" para recibir señales provenientes del exterior de la célula y convertirlas en respuestas dentro de la célula.

CICLO CELULAR

El ciclo celular es un proceso ordenado y complejo que describe el crecimiento y la división de una célula. Es fundamental para el desarrollo, el crecimiento y la reparación de tejidos en todos los organismos vivos.

CELULA RECEPTORA

Es la célula que recibe la señal, generalmente a través de un receptor específico en su superficie.

CELULA DIANA

Es la célula que responde a la señal recibida por la célula receptora.

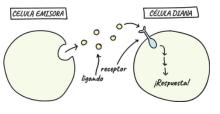
DE MEMBRANA

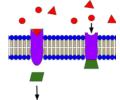
Se encuentran incrustados en la membrana plasmática, la capa que rodea a la célula, Son los más comunes y actúan como intermediarios para las señales que provienen del exterior de la célula, como hormonas, neurotransmisores, factores de crecimiento,

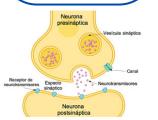
DE SUPERFICIE

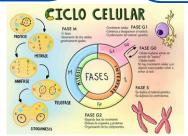
Estos receptores están expuestos al entorno extracelular y son los primeros en interactuar con las moléculas señalizadoras, ejemplo: Receptores de neurotransmisores en las sinapsis neuronales, receptores de hormonas en las células diana de las glándulas endocrinas

INTERFACE


Fase G0 (de reposo)
Fase G1 (Crecimiento 1)
Fase S (Síntesis)
Fase G2 (Crecimiento 2)


FASE M


Profase Metafase Anafase Telofase Citocinesis


TIPOS DE COMUNICACIÓN

Comunicación sináptica Comunicación paracrina Comunicación autocrina Comunicación endócrina Comunicación yuxtacrina

INTEGRACION DE LA FUNCIÓN Y REPLICACIÓN DE LA CÉLULA

METABOLISMO CELULAR

El metabolismo celular es el conjunto de reacciones químicas que ocurren dentro de una célula para mantener la vida.

FUENTES DE ENERGÍA

El anabolismo y el catabolismo son dos procesos metabólicos que requieren energía para funcionar. Aunque son opuestos, comparten la misma moneda energética: el ATP (adenosín trifosfato).

MOVIMIENTOS A TRAVÉS DE MEMBRANA

son procesos esenciales para la vida de las células. Permiten el intercambio de sustancias entre el interior y el exterior celular, manteniendo el equilibrio necesario para su funcionamiento.

TRANSPORTE PASIVO

ANABOLISMO

Proceso que construye moléculas complejas a partir de moléculas más simples, utilizando energía. **CATABOLISMO**

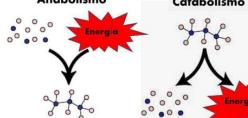
Proceso que degrada moléculas complejas en moléculas más simples, liberando energía. **ANABOLISMO**

ATP, NADPH

CATABOLISMO

Moléculas orgánicas y luz solar

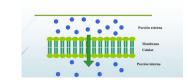
\perp

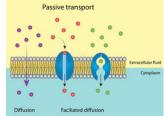

Difusión simple: Movimiento de sustancias a través de la membrana desde una zona de mayor concentración a una de menor concentración.

SIMPLE

FACILITADO

Difusión facilitada:
Movimiento de
sustancias con la ayuda
de proteínas de
membrana, sin gasto de
energía.


Anabolismo

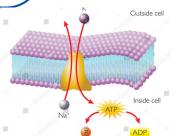


Catabolismo

ANABOLISMO Y CATABOLISMO:

INTEGRACION DE LA FUNCIÓN Y REPLICACIÓN DE LA CÉLULA

TRANSPORTE ACTIVO


Transporte activo: Requiere energía celular para mover sustancias en contra de su gradiente de concentración o electroquímico.

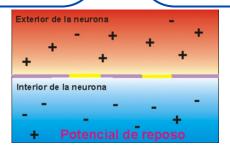
PRIMARIO

Transporte activo primario: Utiliza directamente la energía del ATP para mover sustancias.

SECUNDARIO

Transporte activo secundario: Utiliza la energía almacenada en el gradiente de concentración de otra sustancia para mover la sustancia deseada

POTENCIAL DE MEMBRANA


El potencial de membrana es una diferencia de potencial eléctrico que existe entre el interior y el exterior de una célula. Es decir, hay una diferencia de voltaje entre la cara interna y la cara externa de la membrana celular.

INTERIOR DE LA CÉLULA

Interior de la célula: Más negativo, debido a la presencia de proteínas y otros aniones (iones con carga negativa) que no pueden atravesar fácilmente la membrana.

EXTERIOR DE LA CÉLULA

Exterior de la célula: Más positivo, debido a la concentración de cationes (iones con carga positiva) como el sodio (Na+) y el potasio (K+).

Bibliografía

Libro de porth fisiopatologia 9a edición

https://es.khanacademy.org/science/ap-biology/cell-structure-and-function/facilitated-diffusion/a/active-transport

https://mdurance.com/blog/el-potencial-de-accion/