EUDS Mi Universidad

Ensayo

Fatima Valeria Meneses Jiménez

Ensayo

ler parcial

Biomatemáticas

Carlos Alberto del Valle López

Lic. en Medicina Humana

2do semestre, grupo "B"

Límite de una función

En matemáticas, el límite de una función en un punto es el valor al cual se aproxima la función cuando x se acerca a ese punto.

El límite de la función f (x) en el punto x=a se representa usando la siguiente notación:

$$f(x) = b$$

$$Lim X \rightarrow a$$

La expresión anterior significa que el límite de la función f(x) cuando x tiende a "a" es igual a b.

Ahora, veremos cómo calcular el límite de una función para que de esta manera quede un poco más claro.

Pondremos varios ejemplos de cómo hacer estos cálculos:

Si queremos resolver el límite cuando x tiende a 3 de la siguiente función debemos sustituir las x de la función por 3

$$\lim X -> 3$$

$$(x^2 + 5x - 7) =$$

$$= 3^2 + 5(3) - 7 =$$

$$= 9 + 15 - 7 = 17$$

Más ejemplos de cómo son los límites de una función:

$$\lim X -> 1$$

 $(4x - 1) =$
 $= 4(1) - 1 =$
 $= 4 - 1 = 3$

Límite al infinito

Cómo bien sabemos, el símbolo ∞ no representa un número real. En cambio, el ∞ describe el comportamiento de los valores de la función f (x) que se hacen más y más grandes; al igual que $-\infty$ describe el comportamiento de una función que se hace más negativa.

¿Cómo podemos calcularlos?

Hay tres maneras de calcular los límites al infinito:

- · Por representación gráfica
- Por sustitución
- Por deducción

Cuando X se hace muy grande o muy pequeño

Esto nos dice hacia donde se va la función cuando usamos números muy grandes o muy negativos.

Por ejemplo:

$$Lim X -> \infty$$

$$1/x = 0$$

Si se pone números muy grandes en 1/x cómo 1/1000 o 1/100000, el resultado de hace muy pequeño, cerca de 0.

$$\lim x \to \infty$$

Si a X le das valores cada vez más grandes (1, 10, 100...), la función también crece sin parar.

$$\lim x \rightarrow \infty$$

Si usas números negativos muy grandes la función baja sin límite.

Límite con potencia

Los límites que involucran potencias aparecen con frecuencia en el cálculo, especialmente en el estudio del comportamiento de funciones exponenciales, racionales y polinómicas. Estos límites pueden evaluarse utilizando propiedades algebraicas, reglas de exponente, etc.

Siempre que el exponente n sea un número real, esta propiedad se mantiene.

Por ejemplo:

$$Lim x -> 2$$

$$(x^3) =$$

$$(2)^3 =$$

Los límites con potencias son fundamentales en cálculo y análisis matemático. En algunos casos, se pueden evaluar directamente usando propiedades algebraicas, pero cuando hay indeterminaciones, se requiere el uso de logaritmos y más formas de poder resolverlo.

Límite con raíz

Los límites que involucran raíces aparecen frecuentemente en cálculo y análisis matemático. Se pueden evaluar usando propiedades algebraicas, racionalización y, en algunos casos, la regla de L'Hôpital. Estos límites son clave para entender la continuidad y derivabilidad de funciones con radicales. Si el límite de una función f(x) existe y es un número real L, entonces:

$$X \to a$$

$$\sqrt[n]{f(x)} = \sqrt[n]{\lim f(x)}$$

Siempre que L sea positivo si n es par.

Por ejemplo,

$$\lim x -> 4$$

$$\sqrt{x} =$$

$$= \sqrt{\lim x}$$

$$= \sqrt{4}$$

$$= 2$$

Límite con factorización

Cuando intentamos calcular un límite y obtenemos una indeterminación del tipo 0/0, una de las estrategias más útiles es la factorización. Este método nos permite simplificar la expresión y encontrar el valor del límite de forma más sencilla.

Si al sustituir directamente el valor de x en una función obtenemos 0/0, significa que tanto el numerador como el denominador tienen factores en común que pueden cancelarse.

Por ejemplo:

Lim x-> 3

$$x^2 - 9/x - 3$$

Si sustituimos $x = 3$
 $3^2 - 9/3 - 3 = 9 - 9/0 = 0/0$

Siendo esto una indeterminación, por lo que debemos factorizar el numerador:

$$(x-3)(x+3)/x-3=$$

Cancelamos (x - 3), quedando así:

$$(x + 3) 3 + 3 = 6$$

Límite con factor común

El método del factor común es una estrategia útil para simplificar expresiones en límites cuando se obtiene una indeterminación, como 0/0. Consiste en extraer un factor común en el numerador y/o denominador para simplificar la expresión y facilitar la evaluación del límite.

Por ejemplo:

$$Lim x \rightarrow 2$$

$$x^2 - 4x/x - 2 =$$

Factorizamos el numerador sacando x como factor común:

$$X (x-4)/x-2$$

No podemos cancelar términos directamente, así que evaluamos nuevamente el límite sustituyendo x = 2:

$$X = 2$$

El límite es 2.

El método del factor común es una herramienta útil para simplificar límites con indeterminaciones y valores infinitos. Al extraer el término de mayor grado, es posible cancelar términos y evaluar el límite de manera más sencilla. Este método es esencial en cálculo y análisis matemático.

Bibliografías

- 1. Larson, R., & Edwards, B. (2017). Cálculo: Trascendentes tempranas. Cengage Learning.
- 2. Stewart, J. (2020). Cálculo de una variable. Cengage Learning.
- 3. Courant, R., & John, F. (1999). Introducción al cálculo y al análisis matemático. Editorial Springer.