

Ensayo

Jeshua Villatoro López

Primer Parcial

Biomatematicas

Licenciatura en Medicina Humana

Ensayo

Segundo Semestre

Comitán de Domínguez Chiapas, 07 de marzo del 2025

Introducción

Las matemáticas desempeñan un papel fundamental en la biología y en las ciencias de la salud, ya que permiten modelar fenómenos naturales y analizar procesos biológicos. Entre las herramientas matemáticas más importantes en biomatemáticas se encuentran los límites y las derivadas. Estas nociones permiten describir cambios en procesos biológicos, como la velocidad de crecimiento de poblaciones celulares, la dinámica de concentraciones de sustancias en el cuerpo y la velocidad de reacciones enzimáticas.

El cálculo diferencial e integral es una de las áreas fundamentales de las matemáticas, y dentro de él, los conceptos de límite y derivada juegan un papel crucial. Los límites permiten describir el comportamiento de las funciones en valores específicos o cuando la variable tiende a infinito, mientras que las derivadas se utilizan para determinar tasas de cambio instantáneas y pendientes de funciones.

1. Límites

Definición de Límite

El límite de una función describe el comportamiento de la misma cuando la variable independiente se acerca a un determinado valor. Matemáticamente, se expresa como:

$$\lim_{x\to a} f(x) = L \lim_{x\to a} f(x) = L$$

Esto significa que, a medida que xx se acerca a aa, los valores de f(x)f(x) se aproximan a LL.

Propiedades de los Límites

Algunas propiedades fundamentales de los límites incluyen:

- $\lim_{x\to a} (f(x)+g(x))=\lim_{x\to a} (x)+\lim_{x\to a} (x)\lim_{x\to a} (x)+\lim_{x\to a} (x)\lim_{x\to a} (x)+\lim_{x\to a}$
- liminix→a(f(x)g(x))=liminix→af(x)·liminix→ag(x)\lim_{x \to a} (f(x) g(x)) = \lim_{x \to a} f(x) \cdot \lim_{x \to a} g(x)
- lim@x→a(f(x)g(x))=lim@x→af(x)lim@x→ag(x)\lim_{x \to a} \left(\frac{f(x)}{g(x)} \right) = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)}, siempre que lim@x→ag(x)≠0\lim_{x \to a} g(x) \neq 0

Ejercicio

Calculemos el siguiente límite:

$$\lim_{x\to 2} x\to 2x^2-4x-2\lim_{x\to 2} \frac{x^2-4}{x-2}$$

Factorizamos el numerador:

$$\lim_{x\to 2} x\to 2(x-2)(x+2)x-2\lim_{x\to 2} \frac{x \to 2}{x-2}$$

Cancelamos x-2x-2:

$$\lim_{x \to 2} (x+2) = 4 \lim \{x \to 2\} (x+2) = 4$$

Por lo tanto, el límite es 4.

2. Derivadas

Definición de Derivada

La derivada de una función representa la tasa de cambio instantánea de la misma. Matemáticamente, se define como:

$$f'(x)=\lim_{n\to\infty}h\to 0$$
 $f(x+h)-f(x)h$ $f'(x)=\lim_{n\to\infty}h\to 0$ $f(x+h)-f(x)$

Reglas de Derivación

Algunas reglas básicas de derivación incluyen:

- $ddx(c)=0\frac{d}{dx}(c) = 0$ (derivada de una constante)
- $ddx(xn)=nxn-1\frac{d}{dx}(x^n) = nx^{n-1} (derivada de una potencia)$
- $ddx(f(x)+g(x))=f'(x)+g'(x) \frac{d}{dx} (f(x)+g(x)) = f'(x)+g'(x) (suma de funciones)$
- $ddx(f(x)g(x))=f(x)g'(x)+g(x)f'(x)\sqrt{fac}dd(x)$ (f(x)g(x))=f(x)g'(x)+g(x)f'(x) (producto de funciones)
- ddx(f(x)g(x))=f'(x)g(x)-f(x)g'(x)g(x)2\frac{d}{dx} \left(\frac{f(x)}{g(x)} \right) = \frac{f'(x)g(x) f(x)g'(x)}{g(x)^2} \((regla del cociente) \)

Ejercicio

Calculemos la derivada de:

$$f(x)=x3-5x2+7x-2f(x) = x^3 - 5x^2 + 7x - 2$$

Aplicamos la regla de la potencia:

$$f'(x)=3x2-10x+7f'(x) = 3x^2 - 10x + 7$$

Esto significa que la tasa de cambio de f(x)f(x) en cualquier punto xx está dada por $3x2-10x+73x^2-10x+7$.

Conclusión

Los límites y derivadas son herramientas esenciales en el cálculo, permitiendo analizar el comportamiento de funciones y determinar tasas de cambio. Los límites proporcionan información sobre la tendencia de una función en un punto dado, mientras que las derivadas nos permiten calcular pendientes y cambios instantáneos. Comprender estos conceptos es fundamental para abordar problemas matemáticos avanzados.

Bibliografía

- Stewart, J. (2016). Cálculo: Conceptos y Contextos. Cengage Learning.
- Purcell, E. J., & Varberg, D. (2007). Cálculo Diferencial e Integral. Pearson.
- Murray, J. D. (2002). Mathematical Biology: An Introduction. Springer.