
Enzimas INMOVILIZADORAS (

Técnicas de inmovilización

Se usan métodos como absorción, microencapsulación y unión covalente para inmovilizar enzimas y permitir su uso continuo.

Ventajas

Mejora la estabilidad de las enzimas, permitiendo su reutilización, especialmente para las de alto costo.

Limitación en alimentos

Su uso en alimentos es complicado debido a la complejidad física de los productos alimentarios.

Factores clave

Se deben evaluar factores como el rendimiento de inmovilización, estabilidad operacional, difusión del sustrato, costo, y la posibilidad de utilizar enzimas puras.

Desafíos

A pesar de los avances, la inmovilización enfrenta problemas de eficiencia y la necesidad de evitar que las enzimas queden en el producto.

Purificación de ENZIMAS

en alimentos

Métodos de extracción

Para purificar enzimas de alimentos, se emplean técnicas como homogeneización, congelación-descongelación, y el uso de solventes como acetona y éter.

Desintegración de células lipoproteicas

Cuando las enzimas están asociadas a lípidos, se utilizan detergentes o butanol para disgregar estructuras y liberar las enzimas.

Precipitación fraccionada

Se usan métodos como el cambio de pH y el uso de solventes (como etanol o acetona) o sales (como sulfato de amonio) para purificar las enzimas.

Técnicas cromatográficas

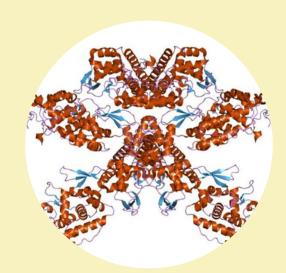
Se aplican técnicas como cromatografía en columnas y fraccionamiento proteico para aislar las enzimas de forma más pura.

Cristalización y pureza

El paso final de la purificación es la cristalización, que debe repetirse varias veces para asegurar que la enzima esté lo más pura posible.

Enzimas como reporteros

del procesamiento de alimentos


Análisis de enzimas

El análisis enzimático detecta la actividad de enzimas como la peroxidasa y la fosfatasa alcalina para controlar procesos como pasteurización y escaldado en alimentos.

Peroxidasa en vegetales

La actividad de la peroxidasa se usa para medir el grado de escaldado de vegetales, evitando un tratamiento excesivo que dañe la textura.

Fosfatasa alcalina en leche

La medición de la fosfatasa alcalina en la leche indica la eficiencia de la pasteurización, asegurando que el proceso haya sido adecuado.

Tecnología de ADN recombinante

La ingeniería genética permite la clonación de genes para producir enzimas a gran escala, modificando su estructura para mejorar su rendimiento industrial.

Producción de enzimas

Microorganismos como E. coli o Bacillus subtilis se utilizan como hospedadores para producir enzimas recombinantes, optimizando su actividad y producción.

Producción de

a través de los alimentos

Las enzimas en los alimentos

Las enzimas catalizan reacciones químicas en los alimentos, como el oscurecimiento de frutas al exponerlas al aire, y son esenciales para la transformación de componentes como proteínas, carbohidratos y lípidos.

Fermentación y enzimas

La fermentación alcohólica, que se utiliza en la producción de productos como cerveza y pan, depende de enzimas como las involucradas en la glucólisis, que transforman el azúcar en piruvato y luego en etanol.

Importancia de las enzimas

Las enzimas son proteínas catalizadoras biológicas fundamentales para acelerar las reacciones metabólicas en las células, permitiendo que los procesos químicos necesarios para la vida ocurran a una velocidad compatible con la vida.

Aplicaciones de enzimas en alimentos

El 30% de las enzimas industriales se utilizan en la industria alimentaria, mejorando la producción de bebidas y alimentos procesados.

Maduración de frutas y enzima

Las pectinasas en la maduración de frutas, como el jitomate, facilitan el ablandamiento y la transformación de los frutos.

Información consultada: