qwertyuiopasdfghjklzxcvbnmqwert
ertyuiopasdfghjklzxcvbnmqwert
yuiopasdfghjklzxcvbnmqwertyui
opasd
capitulo 4 estructura
tridimensional de las proteinas
karol ariadne macias reyes

ghjklz klzxcv

DR. GUILLERMO DEL SOLAR

MEDICINA HUMANA

sdfghj

xcvbnmqwertyuiopasdfghjklzxcv bnmgwertyuiopasdfghjklzxcvbn mqwertyuiopasdfghjklzxcvbnmq wertyuiopasdfghjklzxcvbnmqwe rtyuiopasdfghjklzxcvbnmqwerty uiopasdfghjklzxcvbnmqwertyuio pasdfghjklzxcvbnmqwertyuiopas dfghjklzxcvbnmqwertyuiopasdfg

INTRODUCCION

Antes de hablar de se estructura tridimensional de las proteínas nos damos cuenta que son la secuenciación de aminoácidos y de enlaces peptídicos los que nos llevan abordar este tema.

Las proteínas son moléculas grandes y su esqueleto covalente se componen de centenares de enlaces individuales, una proteína se puede adaptar en números ilimitados de conformaciones y cada proteína nos da una función química o estructural especifica como bien sabemos la estructura de las proteínas siempre serán moldeables y estas van a sufrir cambios estructurales y serán importantes para una función proteica como su propia estructura pero la función que tengan van a ser de acuerdo a su estructura.

Las fuerzas más importantes que estabilizan su estructura específica de cada proteína son por naturaleza no covalentes y nos da un efecto hidrofóbico importante y cada proteína experimenta cambios de conformación, que pueden ser sutiles o espectaculares en su estructura definida básica para su función.

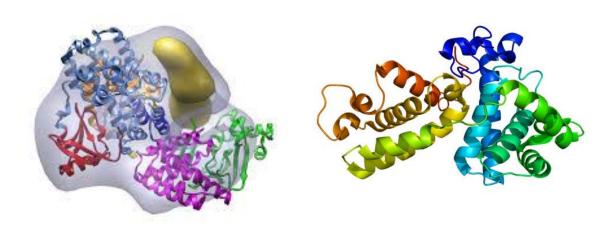
1.- ESTRUCTURA PRIMARIA

Ellas van a tener rotaciones de enlaces sencillos y tendrán cientos de enlaces sencillos determinadas de acuerdo a su condición biológica de acuerdo a su conformación de esta estructura es que puede lograr su estado estructural sin romper enlaces covalentes dentro de esto hay estructuras covalentes y no covalentes.

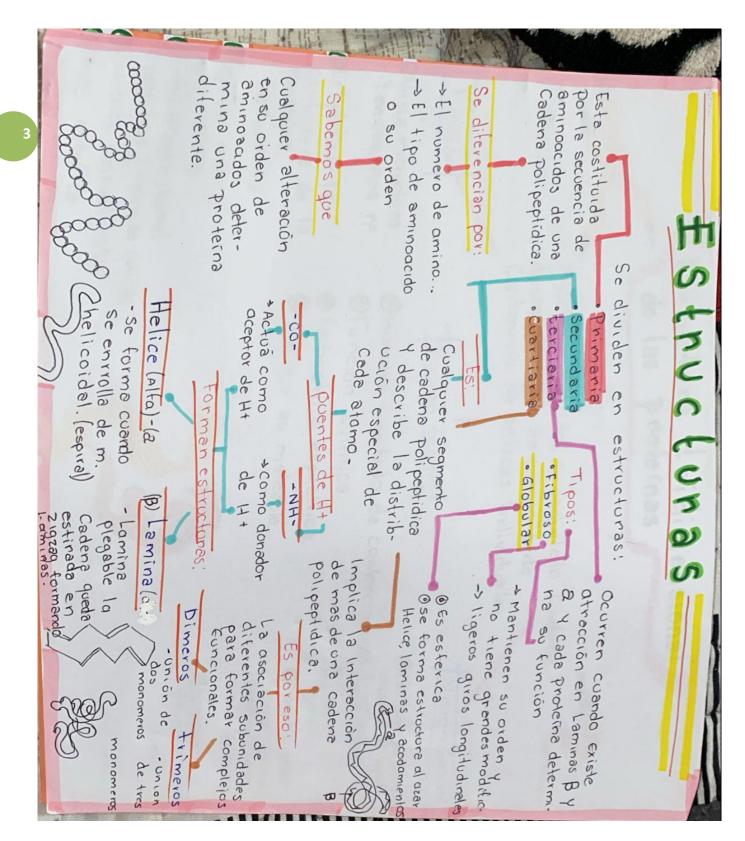
2.- ESTRUCTURA SECUENDARIA

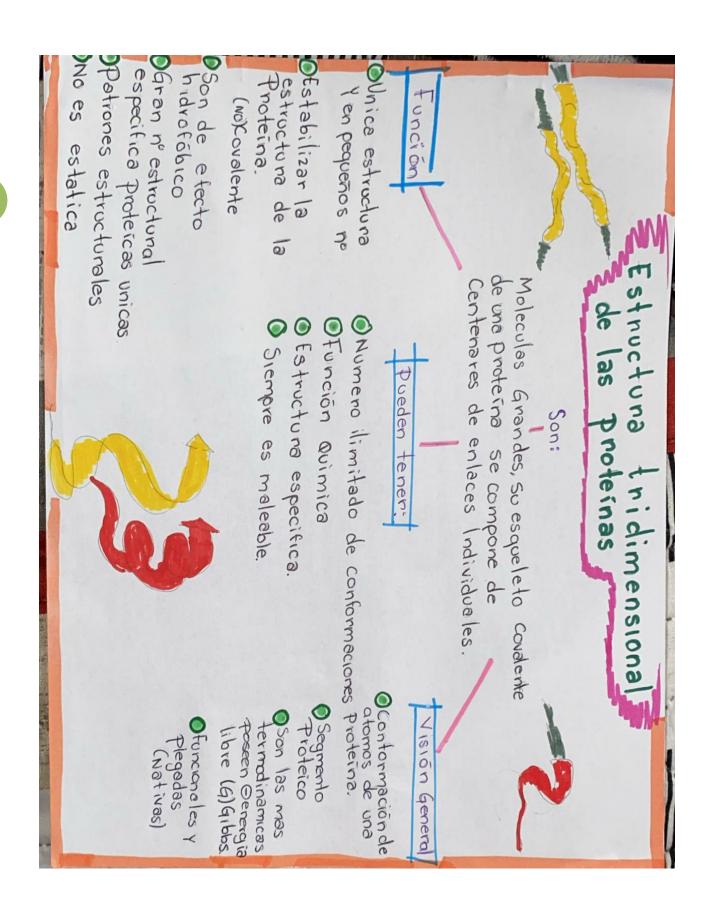
Se refiere a cualquier segmento de una cadena poli peptídica y describe la distribución espacial local de átomos de su cadena principal, la conformación de la estructura secundaria es que tiene un hélice alfa (α); esta se forma cuando las cadenas de aminoácidos se enrollan en un espiral que se extienden hacia la derecha y una muy habitual que recibe el nombre de giro beta (β) es conocida como hoja plegable beta y su estructura en forma de zigzag y se alinean paralelamente.

Estas tiene puentes de hidrogeno que estabilizan la hoja beta y se debe a los puentes de hidrogeno y sus cadenas laterales de los aminoácidos que se proyectan hacia arriba y hacia abajo


del plano de la hoja. Los giros betas de las proteínas son globular y sus bucles donde cada cadena poli peptídica cambia de dirección. Los giros beta conectan los extremos adyacentes de dos segmentos adyacentes de hojas A

3.- ESTRUCTURA TERCIARIA


Es la conformación tridimensional que adquieren las cadenas polipeptídicas al plegarse sobre si mismas estas contienen puentes de hidrogeno, interacciones hidrofobicas, enlaces disulfuro y fuerzas de Van Der Waals. Tienen estructuras globulares en forma esférica y son solubles en agua y fibrosas que tiene forma alargada y son insolubles en agua, esta estructura es crucial para la función biológica de las proteínas ya que determinan cómo interactúan con otras moléculas y desempeñan sus funciones específicas en el organismo.


4.- ESTRUCTURA CUATERNARIA

Se refiere a la organización tridimensional de una proteína que esta formada por dos o mas cadenas polipeptidicas; "subunidades" son heterotipicas o diferentes y se unen mediante enlaces no covalentes su son los hélices alfa que se entrelazan, dímeros protofilamentos y intermedios. Sus puentes de disulfuro otorgan una resistencia frente agentes químicos.

DESARROLLO

CONCLUSION

Si sabemos los átomos forman moléculas y son la parte decisiva en propiedades en composición química y estas moléculas tienen que encajar unas con otras a través de las estructuras tridimensionales y a eso es formar un enzima, las estructuras tridimensionales ayudan a organizar nuestro conocimiento sobre la arquitectura de cada proteína y llevar a nuestra imaginación el potencial que tienen los diseños tridimensionales y nos da a entender la resistencia que tiene cada cantidad de enlaces que lo conforman y como etas uniones en la hemoglobina llegan a tener el paso de oxigeno y dióxido de carbono en nuestro cuerpo al igual que en otras áreas de nuestro cuerpo que no son notables a ciertos rasgos.

BIBLIOGRAFIA

<u>file:///C:/Users/SUR02654WS001/Downloads/Lehninger_Principios%20de%20Bioquimica_7ma_edicio%CC%81n%202.pdf</u>