UNIDAD II NUTRICIÓN EN LA ACTIVIDAD FÍSICA Y EL DEPORTE

MAPA CONCEPTUAL
ALUMNO: GÓMEZ ESPINOZA SERGIO DANIEL
DOCENTE: DANIELA MONTSERRATH MÉNDEZ GUILLÉN
12/10/2024

VÍAS AERÓBICAS Y ANAERÓBICAS

PARÁMETROS BIOQUÍMICOS

Valoran diversos metabólicos y sustratos presentes en la sangre, la orina, la saliva o el sudor

intensidad, duración o frecuencia del ejercicio y el requerimiento energético de éste

VÍA AERÓBICA

en presencia de oxígeno y utiliza fundamentalmente como sustratos energéticos el glucógeno, la glucosa y los ácidos grasos

ESTADO DE MÚSCULOS ACTIVOS

Depende de las medidas antropométricas, peso, talla e IMC

EVALUACIÓN MÉDICA

mediante control de PA, sistólica y diastólica, frecuencia cardiaca

AYUDAS ERGOGÉNICAS

Diferencia entre deportista y una que persona que no hace, es el gasto energético

implican a su vez unos elevados requerimientos energéticos diarios.

ELEVADOS

VENTAJAS

no existe limitación en cuanto a la disponibilidad de sustratos energéticos, ya que los depósitos de grasa son prácticamente ilimitados.

UTILIADA CUANDO

el esfuerzo no es de gran intensidad, aunque sí de mayor duración

PERMITEN

Dar una valoración nutricional y evaluación médica

Valorar la función cardiovascular del deportista

realizada durante una hora de entrenamiento o competición puede suponer un gasto energético de 430-860 kcal

ingesta de
cantidades tan
grandes de alimentos
sólidos puede
acarrear problemas
durante los días de
competición

VÍA ANAERÓBICA LÁCTICA

Sustrato que se puede
utilizar en esta vía
metabólica son los hidratos
de carbono: glucosa y
glucógeno

FIBRAS

fibras tipo I: libras
lentas con gran
capacidad aeróbica
Fibras tipo II:
velocidad de
contracción más
rápida.

VÍAS AERÓBICAS Y ANAERÓBICAS

EFICIENCIA ENERGÉTICA

Las respuestas del organismo a la actividad física son los cambios que se producen para poder desarrollar un trabajo físico. (Huida y caza)

NIVEL

RESPIRATORIO

La ventilación

aumenta

progresivamente

AUMENTA TAMBIÉN

ligeramente la

cantidad total de

sangre circulante

cuando el bazo se

contrae

SE LIBERAN

adrenalina y noradrenalina

A TRAVÉS

Del sistema nervioso y después desde la glándula suprarrenal.

VÍA ANAERÓBICA

Al inicio de la contracción la fibra muscular utiliza su propio ATP

DE ESTA FORMA

Se puede obtener una gran cantidad de enrgía

ENZIMA INVOLUCRADA

Creatinguinasa CPK

VÍA LÁCTICA

Utiliz como sustratos hc; glucosa y glucógeno

NO UTILIZA OXÍGENO

y produce ácido láctico

CONSUMO DE OXÍGENO

se representa por V.O2 y expresa la cantidad de oxígeno que el organismo utiliza para obtener la energía necesaria cuando realiza un trabajo físico determinado.

PERMITE

medir indirectamente la energía producida por vía aeróbica.

FACTORES

- Condiciones mecánicos
- Nivel del entrenamiento
- Factores climáticos y ambientales

V.02

puede expresarse en términos de cantidad (litros o mililitros) o de flujo (litros/minuto o mililitros/minuto)

FACTORES

- Constitución genética
- Masa muscular en movimiento
- Edad
- Sexo
- Motivación
- Entrenamiento

VÍAS AERÓBICAS Y ANAERÓBICAS

W

UMBRAL ANAERÓBICO

Si la intensidad del trabajo sigue aumentando

ACABARÁ POR

inactivar las

enzimas que

intervienen en el

metabolismo

energético muscular

APARECERÁ

la fatiga y el cese de

las contracciones

musculares.

LLEGARÁ

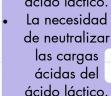
un momento en que la producción de cargas ácidas será tan alta que el organismo será incapaz de neutralizarlas y eliminarlas

CON LO CUAL

Irán acumulándose e instaurando progresivamente una acidosis metabólica

UMBRAL AERÓBICO

punto en el cual el metabolismo aeróbico se hace insuficiente para satisfacer las demandas energéticas del músculo


EN CONSECUENCIA

es necesario recurrir a las fuentes anaeróbicas adicionales de suministro energético

CONSECUENCIA

El aumento de producción de ácido láctico.
La necesidad

S

DURANTE EL EJRCICO

el organismo utiliza fundamentalmente el sistema del bicarbonato como medio para neutralizar las cargas ácidas

PRODUCIDAS

Por la formación de ácido láctico

ZONA DE TRANSICIÓN AERÓ-ANAERÓBICA

El organismo es capaz de neutralizar las cargas ácidas producidas, e impidir así que se instaure la acidosis metabólica.

10

TIPOS DE ENTRENAMIENT OS AERÓBICOS

Caminar

- Correr
- Nadar
- Montar en bici
- Deportes en equipo
- Bailar
- Cardio

- TIPOS DE ENTRENAMIENTO ANAERÓBICOS
- Levantammiento de pesas
- Abdominales
- Sentadillas
- Desplantes
- Carreras cortas a gran veloidad
- Burpees

Antología de la UDS de México. (2024). Nutrición en la actividad física y el deporte