

Profesora: Daniela Monserrat Méndez Guillén

Alumno: Carlos Armando Torres de León

7mo cuatrimestre de nutrición

Antropometría aplicada

Definición

La antropometría mide el cuerpo para evaluar factores que influyen en el rendimiento deportivo

Relacionar dimensiones corporales, somatotipo y rendimiento

- Facilita la selección y adaptación de atletas
- Informa sobre el desarrollo físico, ayudando a entrenadores, profesores y médicos deportivos
- Medición de pliegues cutáneos y proporciones corporales.
- Requiere técnica precisa para evitar errores en la medición.

Protocolo para la medición antropométrica

Composición

corporal

Definición

- Medición del grosor de piel y grasa subcutánea
- Estima el porcentaje de grasa corporal.
- Evaluación precisa de la composición corporal
- Utilizado en deporte, medicina y estudios poblacionales

Pasos

- Palpar y marcar puntos de referencia
- Elevar doble pliegue con índice y pulgar
- Usar calibrador después de 2-3 segundos
- Mantener pliegue perpendicular a la piel

Errores

- Presión insuficiente de los dedos
- Medición en ángulo incorrecto
- Selección inadecuada del sitio

UNIDAD III

Cineantropometría

Estudia tamaño, forma, composición, estructura y proporcionalidad corporal

Técnica Antropométrica

- Mide peso, talla, pliegues cutáneos, diámetros, perímetros
- Estima composición corporal mediante ecuaciones.
- Basado en normas de ISAK y **GREC**

Consideraciones de Medición

- Espacio amplio, ropa mínima, a primera hora
- Medición en hemicuerpo derecho
- Calibración del material

Biotipo y Proporcionalidad -

Fenotipo

- Estructurales
- Bioquímicas
- Fisiológicas
- Conductuales

Biotipo

- Sanguíneo
- Colérico
- Melancólico
- Flemático

Otras Clasificaciones de Biotipos

- Biotipo facial
- Biotipo cutáneo

Adaptación del régimen alimentario

AlimentaciónPrecompetitiva

- Alta en carbohidratos complejos
- Evitar azúcares simples 45 minutos antes para prevenir hipoglucemia
- Baja en grasas
- Baja en proteínas

Alimentación Percompetitiva

- Alta en agua y sales minerales para reponer pérdidas
- Alta en carbohidratos
- Baja en proteínas y grasas

Alimentación Postcompetitiva

- Rehidratar con bebidas de reposición hipotónicas
- Rica en carbohidratos y baja en grasas y proteínas
- Frutas maduras

Demanda energética

Sistemas Energéticos

- Fosfágeno: Rápido, para esfuerzos de 5-8 segundos
- Glucólisis Anaeróbica:
 Utiliza glucógeno sin oxígeno genera ATP rápidamente
- Metabolismo Aeróbico

Fibras Musculares

- Fibras Tipo IIb
- Fibras Tipo IIa
- Fibras Tipo I

Esfuerzos de Alta Intensidad

- Necesitan PCr y glucógeno como fuentes de energía rápidas
- Fatiga rápida por acumulación de lactato y agotamiento de PCr

Consecuencias de Insuficiente Energía

- Pérdida de peso y músculo por déficit calórico
- Importancia de cubrir gasto energético en reposo para mantener masa magra

UNIDAD III

Alimentación Maximizar

pre competencia

Objetivo Principal

Maximizar la disponibilidad de glucógeno en los músculos para mejorar el rendimiento en competencia o entrenamiento

Selección de Alimentos

- Evitar nuevos alimentos, geles o bebidas deportivas antes de la competencia
- Minimiza el riesgo de molestias digestivas que pueden afectar el rendimiento

Estrategia de Prueba en Entrenamiento

- Simulación de competencia
- Evitar cambios de último momento en la competencia

Alimentación durante competencia

lmportancia de la Hidratación

- Fundamental en eventos de larga duración
- Compensa la constante pérdida de agua y mantiene la concentración corporal de líquidos.

Recomendaciones de Hidratación

- Accesibilidad
- Botella personal
- Frecuencia de ingesta
- Personalización

Características de las Bebidas Deportivas

- Concentración ideal de 6-7% de carbohidratos
- Preferible mezcla de glucosa y sacarosa; evitar fructosa para reducir riesgo de malestar intestinal

Alimentación post competencia

Objetivo

Recuperación y preparación para la siguiente sesión de entrenamiento

Reposición de Glucógeno

- Ingesta de hidratos de carbono
- Cantidad recomendada de 1.2 g/kg de peso corporal por hora durante varias horas post ejercicio

Planificación Post Ejercicio

- Planificar el consumo de carbohidratos y proteínas de alta calidad inmediatamente después de la actividad
- La combinación de carbohidratos y proteínas ayuda en la recuperación y preparación muscular

EstrategiasNutricionales

Recomendacio

nes de hidratos

de carbono

Relación entre Metabolismo y Actividad

Todos los sistemas energéticos (aeróbicos y anaeróbicos) se combinan para satisfacer las necesidades energéticas del atleta

Reserva de Glucógeno y Lípidos

- Fibras de contracción rápida: Tienen un 16-31% más de glucógeno que las de contracción lenta
- Fibras de contracción lenta: Consumen glucógeno inicialmente

Riesgo de Aumento de Grasa Corporal

- Dietas altas en calorías y grasas, sobre todo de proteínas de origen animal que contienen grasas
- Exceso de grasa corporal fuera de temporada
- Riesgo de obesidad y predisposición a enfermedades y mortalidad temprana al retirarse del deporte

UNIDAD III

Glucógeno

Fuente clave de energía en actividades de alta intensidad, aporta la mayoría del ATP cuando el esfuerzo supera el 75% del VO₂max

Dieta Alta en Carbohidratos

- Aumenta las reservas de glucógeno y retrasa la fatiga.
- Dietas bajas en carbohidratos limitan el rendimiento en actividades intensas.

Ingesta Recomendada

- 8-12 g/kg/día para entrenamientos intensos
- 6-10 g/kg/día para actividades de 1-3 h/día

Recomendaciones de proteínas

🛾 Ingesta Recomendada 🛮

- 1.5-1.7 g/kg/día para atletas de potencia o velocidad
- Aproximadamente el doble que el requerimiento de un adulto promedio

Consumo Regular

- Se recomienda consumir
 0.3 g/kg de proteína de alta calidad por comida
- Distribuir el consumo a lo largo del día para optimizar la síntesis de proteínas musculares

Post-Ejercicio

 Prestar especial atención al consumo de proteínas después del ejercicio para estimular la recuperación muscular

Recomendacio nes de Grasa

Función

Aunque los hidratos de carbono son el combustible principal, la grasa también es importante para actividades de intensidad moderada a alta

Tradición Histórica

Ingesta Recomendada

- Se recomienda una ingesta de 2 g/kg/día de grasa
- Un consumo mayor puede interferir con la recuperación de glucógeno y la reparación del tejido muscular

Suministro Nutricional /

La ingesta de grasa debe ser suficiente para proveer vitaminas liposolubles, ácidos grasos esenciales y para la síntesis de hormonas

Equilibrio Energético

Un consumo excesivo de un sustrato energético puede resultar en una ingesta inadecuada de otro, afectando el rendimiento y la recuperación

Construcción de Masa Magra

Desde tiempos antiguos, los atletas de potencia han buscado aumentar su masa muscular, como lo hizo Milo

de Crotona con ejercicio y proteínas

Estrategias Modernas

Utilizan entrenamiento de fuerza y un mayor consumo calórico. Algunos productos no siempre son efectivos y pueden suplir deficiencias dietéticas

Proteínas

Un alto consumo puede ser beneficioso, pero el exceso puede causar problemas como deshidratación

Hormonas Anabólicas

La nutrición y el entrenamiento influyen en hormonas que promueven el crecimiento muscular, pero el exceso de nutrientes no necesariamente mejora su producción

UNIDAD III

Estrategias nutricionales para mejorar la resistencia

Deportes de Resistencia

Implican actividad continua durante más de 20 minutos

Régimen Alimentario

Problemas Comunes

- Molestias Digestivas: A menudo por consumo inadecuado de bebidas electrolíticas
- Hiponatremia: Ocurre en eventos prolongados con excesiva ingesta de líquidos y baja concentración de electrolitos

Metabolismo Aeróbico

Es el principal sistema energético, utilizando grasas y glucógeno.

Durante el ejercicio prolongado, ambos combustibles son necesarios, con los carbohidratos siendo esenciales para mantener el rendimiento

Régimen alimentario

Estrategias nutricionales que los atletas deben seguir para optimizar su rendimiento según sus objetivos de peso y condición física

Pérdida de Peso

Se debe lograr a través de la reducción de grasa corporal, con un descenso gradual y ejercicio moderado

Ganancia de Peso

Implica un aumento de la ingesta calórica, combinado con entrenamiento de fuerza para maximizar el crecimiento muscular

Mejorar la Resistencia

Adecuada hidratación, consumo de carbohidratos y un plan de entrenamiento que asegure un rendimiento óptimo