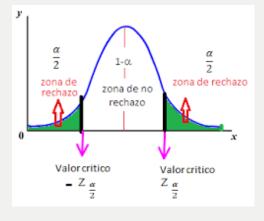
ESTADISTICA

LUIS ENRIQUE MENESES WONG

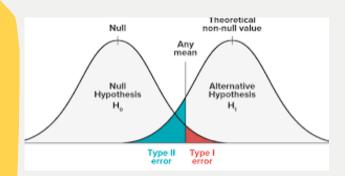

LUCERO PÈREZ SOLÓRZANO

> CUARTO CUATRIMESTRE

LICENCIATURA EN NUTRICIÓN

NOVIEMBRE 2024

ESTADISTICA



HIPOTESIS

consiste en evaluar si una diferencia observada entre un valor muestral y un valor poblacional (o entre diferentes muestras) es estadísticamente significativa o si puede atribuirse al azar Este método permite determinar si una diferencia observada entre los datos y la hipótesis se debe al azar o si es suficientemente significativa para aceptar la hipótesis alternativa.

ERROR TIPO LY LL

es la posibilidad de cometer un error RI rechaza la H nula siendo verdadera (a) r2 ocurre si no se rechaza la hipótesis nula cuando es falsa (b)

Región de Rechazo Región de Rechazo 0.05 0.05

PRUEBA DE HIPOTESIS

Al realizar una prueba de hipótesis, se definen dos hipótesis:

- HO: Representa lo contrario de lo que se espera probar, usando signos como \leq o \geq .
- HI: Es lo que se espera demostrar, utilizando signos > o <. se pueden cometer dos tipos de errores:
 - Error de tipo I (α)
 - Error de tipo II (β)

El nivel de significancia (α) , fijado en 5%, controla el riesgo de cometer un error tipo I y es clave en la toma de decisiones.

HIPOTESIS Z

permite estimar parámetros poblacionales a partir de

una muestra, basándose en el teorema del límite central.

en la hipótesis z los valores se distribuyen con dos tablas una de una cola y de dos colas donde a se divide en 2

$$Z = \frac{\bar{X} - \mu}{\frac{\sigma}{\bar{C}}}$$

- \bar{X} : media muestral,
- μ: media poblacional bajo la hipótesis nula,
- σ: desviación estándar de la población,
- n: tamaño de la muestra.

α	Valor Crítico Z (Dos Colas)		
0.10	±1,645		
0.05	±1,960		
0.01	±2,576		
0.001	±3,291		

Cuadro 4.1: Valores Críticos Z para la Prueba de Dos Colas

α	Valor Crítico Z (Una Cola)				
0.10	1.280				
0.05	1.645				
0.01	2.326				
0.001	3.090				

Cuadro 4.2: Valores Críticos Z para la Prueba de Una Cola

Varianza poblacional (σ^2) .

$$\sigma^2 = \frac{\sum_{i=1}^{N} (x_i - \mu)^2}{N}$$

donde:

- x_i es cada valor del conjunto de datos.
 - μ es la media de la población.
- N es el tamaño de la población.

$$s^{2} = \frac{\sum_{i=1}^{n} (x_{i} - \overline{x})^{2}}{n-1}$$

donde:

- \bar{x} es la media de la muestra. n es el tamaño de la muestra.
- x_i es cada valor del conjunto de datos m

VARIANZA

Mide la dispersión de datos con respecto a la media es una medida de qué tan "extendidos" están los datos en un grupo, pero al cuadrar las diferencias se divide en varianza poblacional y varianza muestral

ESTADISTICA

DESVIACION ESTANDAR

medida que indica que tan diferente están los datos en el grupo

su divide en

muestral (s)

y poblacional (ó)

$$\sigma = \sqrt{\frac{\sum_{i=1}^{N} (x_i - \mu)^2}{N}}$$

$s = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \overline{x})^2}{n-1}}$

PRUEBA T STUDENT

método estadístico utilizado para comparar la media de una muestra con un valor específico

pasos:

planear hipótesis determinar nivel de significancia media y desviación estándar aplicar la fórmula de t comparar Interpretar resultados $t = \frac{\bar{X} - \mu}{\frac{s}{\sqrt{n}}}$

Grados de libertad (df)	0.10	0.05	0.025	0.01	0.001
1	6.314	12.706	31.821	63.657	318.309
2	2.920	4.303	6.205	9.925	22.327
3	2.353	3.182	4.177	5.841	10.214
4	2.132	2.776	3.495	4.604	7.173
5	2.015	2.571	3.163	4.032	5.893
6	1.943	2.447	2.933	3.707	5.208
7	1.895	2.365	2.828	3.499	4.785
8	1.860	2.306	2.752	3.355	4.501
9	1.833	2.262	2.693	3.249	4.296
10	1.812	2.228	2.644	3.169	4.144
11	1.796	2.201	2.603	3.106	4.025
12	1.782	2.179	2.568	3.050	3.931
13	1.771	2.160	2.537	3.007	3.850
14	1.761	2.145	2.510	2.978	3.782
15	1.753	2.131	2.485	2.947	3.725
16	1.746	2.120	2.461	2.921	3.678
17	1.740	2.110	2.439	2.898	3.640
18	1.734	2.101	2.419	2.878	3.608
10	1.720	2.002	2 200	2 961	2 / 62

Grados de libertad (df)	0.10	0.05	0.025	0.01	0.001
1	3.078	6.314	12.706	31.821	63.657
2	1.886	2.920	4.303	6.205	9.925
3	1.638	2.353	3.182	4.177	5.841
4	1.533	2.132	2.776	3.495	4.604
5	1.476	2.015	2.571	3.163	4.032
6	1.440	1.943	2.447	2.933	3.707
7	1.415	1.895	2.365	2.828	3.499
8	1.397	1.860	2.306	2.752	3.355
9	1.383	1.833	2.262	2.693	3.249
10	1.372	1.812	2.228	2.644	3.169
11	1.363	1.796	2.201	2.603	3.106
12	1.356	1.782	2.179	2.568	3.050
13	1.350	1.771	2.160	2.537	3.007
14	1.345	1.761	2.145	2.510	2.978
15	1.341	1.753	2.131	2.485	2.947
16	1.337	1.746	2.120	2.461	2.921
17	1.333	1.740	2.110	2.439	2.898
18	1.330	1.734	2.101	2.419	2.878

BIBLIOGRAFIA
UNIVERSIDAD DEL SURESTE
2024. ANTOLOGIA DE
ESTADISTICA UNIDAD 4.PDF