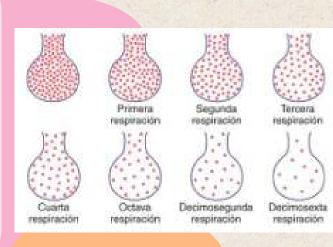


Materia: Fisiopatología

Docente: Miguel Basilio Robledo

Alumno. Danna Lourdes Rivera Gaspar

Licenciatura: Medicina humana

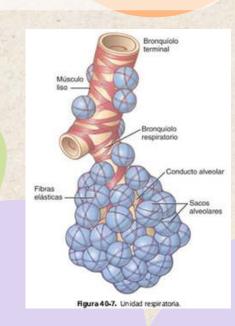

Semestre: 3


PRINCIPIOS DE INTERCAMBIO GASEOSO

CONCENTRACIÓN Y PRESIÓN PARCIAL DE OXÍGENO EN LOS ALVEOLOS

Esta controlada por:

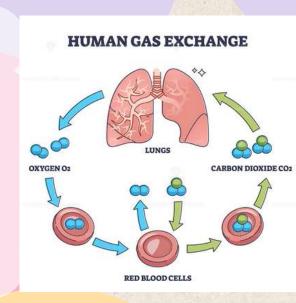
- -Velocidad de absorción de CO2 hacia la sangre.
- -La velocidad de entrada de O2 nuevo a los pulmones por el proceso ventilatorio.

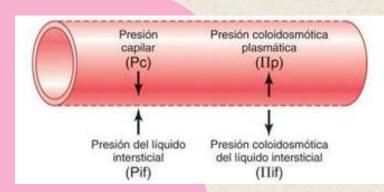

CONCENTRACIÓN Y PRESION PARCIAL DE CO2 EN LOS ALVEOLOS

- -Primero la Pco2 alveolar aumenta en proporción directa a la velocidad de excreción de CO2.
- -Segundo la Pco2 alveolar disminuye en proporción inversa a la ventilación alveolar.

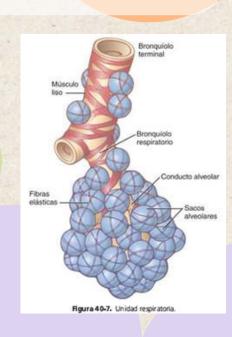
Estas presiones son determinadas por la absorción y excreción de los gases.

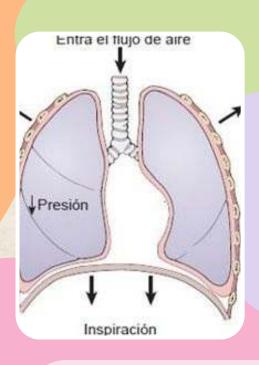
DIFUSION DE GASES ATRAVES DE LA MEMBRANA RESPIRATORIA


La unidad respiratoria (tambien llamado lobulillo respiratorio) que esta formada por un bronquiolo respiratorio, los conductos alveolares, los atrios y alveolos.


MEMBRANA RESPIRATORIA

- 1.- Una capa de líquido que contiene surfactante y que tapiza el alveolo lo que reduce la tensión superficial del liquido alveolar.
- 2.- El epitelio alveolar formado por células epiteliales delgadas.
- 3.- Una membrana basal epitelial.
- 4.- Un espacio intersticial delgado entre el epitelio alveolar y la membrana capilar.
- 5.- Una membrana basal capilar que se funciona con la membrana basal del epitelio alveolar.
- 6.- La membrana del endotelio capilar.


FUERZAS DE FRANK STARLING

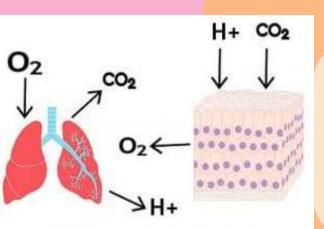

El epitelio alveolar transporta iones Na de forma activa y el agua sigue pasivamente los cambios osmóticos originados por este bombeo de iones.

- La sangre entra a la áurica izquierda desde los pulmones y se oxigena a 104mmHg. Esto en un 98%.
- La sangre restante es la venosa sistémica equivalente al 2% y a 40mmHg.
- Cuando la sangre de las venas pulmonares y la sangre oxigenada se combina se genera una presion de 95 mmHg.

PRESIONES

- 1.- arterias pulmonares: presión media de 15mmHg.
- 2.- aurícula derecha: sistólica 25mmHg, diastólica 0mmHg.
- 3.- venas pulmonares: presión media 2mmHg.
- 4.- aurícula izquierda: 2mmHg.

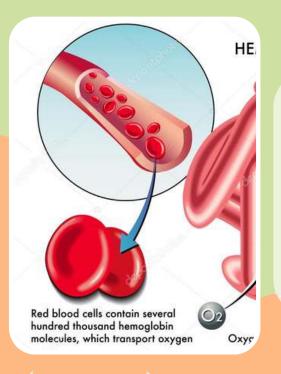
Las fuerzas hidrostáticas y coloidosmóticas determinan el movimiento del líquido atreves de la membrana capilar.



PRESIONES DE ENCLAVAMIENTO

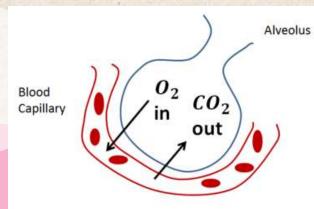
EFECTO DE HALDANE

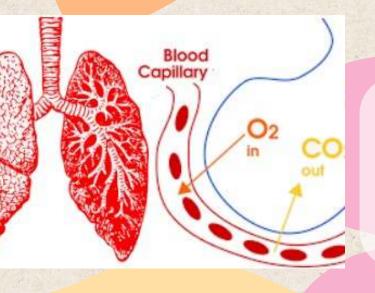
• Facilita el transporte de CO2 con la hemoglobina y se desplaza de dos maneras distintas.



La acides de la hemoglobina libera un exceso de H en los cuales se unen a HCO3 para formar un ácido carbónico que después desaparece con el agua y termina liberando CO2 en los alveolos.

La hemoglobina tiene menor probabilidad carbaminohemoglobina con el CO2.





EFECTO DE BOHR

• Esto ocurre cuando la sangre atraviesa los tejidos ya que el CO2 se difunde hacia la sangre y aumenta el PCO2 sanguínea esto eleva el ácido carbónico y los iones de hidrogeno, liberándose el O2 en los tejidos.

En condiciones de reposo se transporta 4ml de CO2 desde los tejidos hasta llegar a los pulmones.

• Existe un efecto contrario en los pulmones de CO2 y estos se difunden hacia los alveolos con el PCO2 y los iones de H en la sangre.