EUDS Mi Universidad super nota

Nombre del Alumno: Víctor Alexis Vázquez Mazariegos

Nombre del tema : relaciones entre variables

Parcial: tercer cuatrimestre

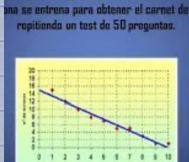
Nombre de la Materia: estadística descriptiva en nutrición

Nombre del profesor: Andrés Alejandro Reyes Molina

Nombre de la Licenciatura: licenciatura en nutrición

Cuatrimestre III

RELACIONES ENTRE VARIABLES

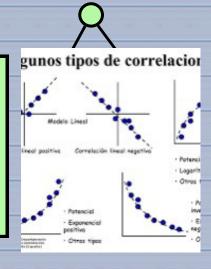

COVARIANZA

La covarianza nos mide la covariación conjunta de dos variables

COVARIANZA

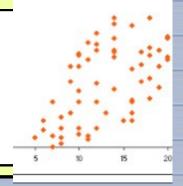
Ejemplo 2:

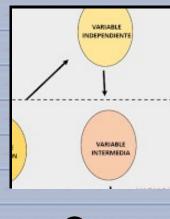
Si es positiva nos dará la información de que a valores altos de una de las variable hay una mayor tendencia a encontrar valores altos de la otra variable y a valores bajos de una de las variable ,correspondientemente valores bajos.


de relaciones entre varia-


Tras realizar el cálculo del coeficiente de correlación de Pearson (r) debemos

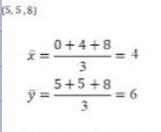
TEST DE HIPÓTESIS DE R


determinar si dicho coeficiente es estadísticamente diferente de cero.


TEST DE HIPÓTESIS DE R

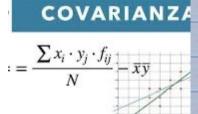
 Si el valor del r calculado (en el ejemplo previo r = 0.885) supera al valor del error estándar multiplicado por la t de Student con n-2 grados de libertad, diremos que el coeficiente de correlación es significativo.

TEST DE HIPÓTESIS DE R



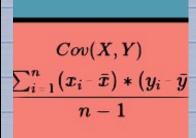
El nivel de significación viene dado por la decisión que adoptemos al buscar el valor en la tabla de la t de Student.

$$T) = \frac{\sum_{1}^{n} (x_i - \bar{x})}{n}$$


R

(0, 4, 8)

(0-4)×(5-6)+(4-4)×(5-6)+(8-4)× 3 TEST DE HIPÓTESIS DE R


La distribución del coeficiente de correlación de Pearson no es normal pero no se puede transformar r para conseguir un valor z que sigue una distribución normal (transformación de Fisher) y calcular a partir del valor z el intervalo de confianza.

RELACIONES ENTRE VARIABLES

El coeficiente de correlación como previamente se indicó oscila entre -1 y +| encontrándose en medio el valor 0 que indica que no existe asociación lineal entre las dos variables a estudio.

Q

 $\bar{x} = \frac{0+4+8}{3} = 4$

 $\bar{y} = \frac{5+5+8}{3} = 6$

(0, 4, 8)

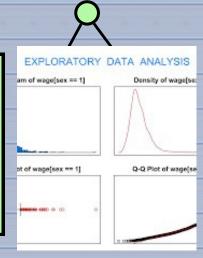
$\frac{\sum (x_i - \bar{x})(y_i)}{n-1}$

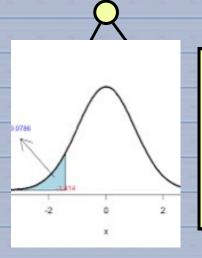
$$\sum (x_i - \mu_x)(y$$

INTERPRETACIÓN DE CORRELACIÓN

significancia estadística de un coeficiente debe tenerse en cuenta conjuntamente con la relevancia clínica del fenómeno que estudiamos ya que coeficientes de 0.5 a 0.7 tienden ya a ser significativos como muestras pequeñas.

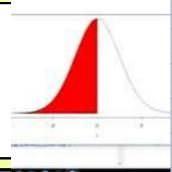
<u>Covarianza</u>

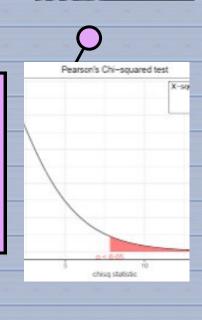

$$(X,Y) = \frac{\sum_{i=1}^{N} (x_i - \overline{x})(y_i)}{n}$$

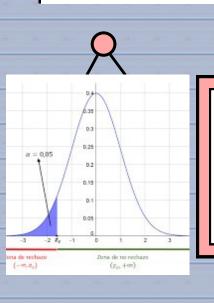

IN

riance = $\frac{\sum (x_i - x_{avg})(y_i - y_{avg})}{n-1}$

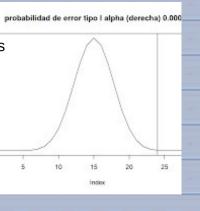
INTERPRETACIÓN DE CORRELACIÓN

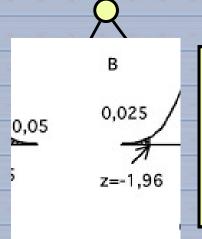

coeficiente de correlación no debe utilizarse para comparar dos métodos que intentan medir el mismo evento, como por ejemplo dos instrumentos que miden la tensión arterial.


INTERPRETACIÓN DE CORRELACIÓN


Los valores de los rangos se colocan según el orden numérico de los datos de la variable.

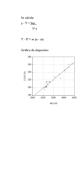
INTERPRETACIÓN DE CORRELACIÓN


utilizamos la fórmula para calcular el coeficiente de correlación de Pearson de los rangos obtendríamos el mismo resultado


INTERPRETACIÓN DE CORRELACIÓN

La interpretación del coeficiente rs de Spearman es similar a la Pearson. Valores próximos a 1 indican una correlación fuerte y positiva. Valores próximos a -| indican una correlación fuerte y negativa. Valores próximos a cero indican que no hay correlación lineal.

RELACIONES ENTRE VARIABLES



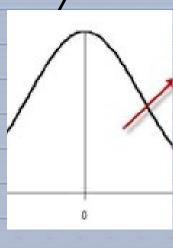
(0, 4, 8) (5, 5, 8)

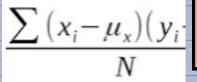
INTERPRETACIÓN DE CORRELACIÓN

siempre y cuando ambas sean cuantitativas.

Coeficiente de regresión: Indica el número de unidades en que se modifica la variable dependiente "y" por efecto del cambio de la variable independiente "X" o viceversa en una unidad de medida. Clases de coeficiente de Regresión:

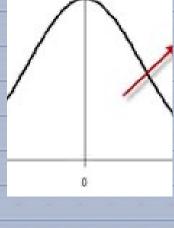
z = -1,96


0,05


5

INTERPRETACIÓN DE **CORRELACIÓN**

 $\bar{x} = \frac{0+4+8}{3} = 4$ $\bar{y} = \frac{5+5+8}{3} = 6$


El coeficiente de regresión puede ser: Positivo, Negativo y Nulo. Es positivo cuando las variaciones de la variable independiente X son directamente proporcionales a las variaciones de la variable dependiente

INTERPRETACIÓN DE **CORRELACIÓN**

Es negativo, cuando las variaciones de la variable independiente "X" son inversamente proporcionales a las variaciones de las variables dependientes """. Es nulo o cero, cuando entre las variables dependientes "Y" e independientes "X" no existen relación

de relaciones entre varia

(5) iii

Universidad del sureste. 2023. antología de estadística descriptiva en nutrición PDF.

https://plataformaeducativauds.com.mx/assets/docs/libro/LNU/2e38faf807e4310316facdc1b7d23494-LC-LNU302%20ESTADISTICA%20DESCRIPTIVA%20EN%20NUTRICION.pdf