

**Nombre de alumno:** Jenny Denis González Pérez.

Nombre del profesor: Aldo Irecta Najera.

Nombre del trabajo: Coeficiente de variación y sus aplicaciones.

Materia: Estadística Descriptiva.

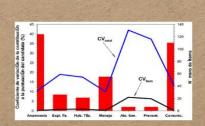
Fecha: 21 de Mayo del 2024

# COEFICIENTE DE VARIACION

## ¿Que es el coeficiente de variacion?

Es una medida estadística que ofrece información respecto de la dispersión relativa de un conjunto de datos.

Coeficiente de variación


$$CV = \left(\frac{ds}{\overline{x}}\right) \times 100$$

#### VARIANZA Desviación estandar

| EDAD  | *    | f  | (x-x)"+ | =21        |
|-------|------|----|---------|------------|
| 10-15 | 12,5 | 5  | 911,25  | 1- Σ(x-x)- |
| 15-20 | 17,5 | 9  | 650,25  | N N        |
| 20-25 | 225  | 12 | 147     |            |
| 25-30 | 27,5 | 15 | 33,75   | C = -      |
| 30-35 | 32,5 | 11 | 464,75  | AND X      |
|       |      | 60 | 3265    | ****       |

### Usos del coeficiente de variación

Se utiliza para comparar la dispersión (variación) de conjuntos de datos de medidas diferentes o con medidas aritméticas diferentes.







| Estatura (E)                                                                                       | Peso (P)                                                                          |  |
|----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|--|
| $\mu_E = 160 \ cm$ $\wedge$ $\sigma_E = 16 \ cm$                                                   | $\bar{x}_P = 70kg  \wedge  s_P = 14kg$                                            |  |
| $CV_E = \frac{\sigma_E}{\mu_E} = \frac{16 \text{ cm}}{160 \text{ cm}} = \frac{1}{10} = 0.1 = 10\%$ | $CV_P = \frac{s_P}{\bar{x}_P} = \frac{14  kg}{70  kg} = \frac{1}{5} = 0.2 = 20\%$ |  |

Ejemplo: Como complemento de la altura de los perros , calcula el coeficiente de variación.

 $Cv = \frac{147}{394} \times 100\%$   $Cv = 0.3730 \times 100\%$ 

Podemos concluir que la dispersión de la altura e los perros es comparativamente reducida; por consiguiente no esiste una variación amplia entre los datos. Esto significa que el conjunto de datos es estable y compacto



• Para los toros:  $CV = \frac{40}{500} = 0.08$ • Para los perros:  $CV = \frac{10}{20} = 0.50$ 

De este modo sí se aptecia clatamente que la variación de los pesos de los petro (50%) es mucho mayor que la de los pesos de los toros (8%).

# Referencias bibliográficas:

UDS ANTOLIGIA 2024 ESTADISTICA I.

Software DELSOL. (2022, 7 marzo). > Coeficiente de variación ¿Qué es? Software del Sol. https://www.sdelsol.com/glosario/coeficiente-de-variacion/

Sanjuán, F. J. M. (2024, 22 febrero). Coeficiente de variación- Descubre qué es, sus usos y algunos ejemplos.

Economipedia. https://economipedia.com/definiciones/coeficiente-devariacion.html