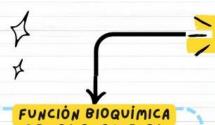


MAPA CONCEPTUAL

Nombre del Alumno: Daniela Miceli Sandoval.

Nombre del tema: Bioenergética y catalizadores biológicos

Parcial: II


Nombre de la Materia: Bioquímica

Nombre del profesor: Daniela Monserrat Méndez Guillen.

Nombre de la Licenciatura: Bachillerato En Enfermería

6 semestre

UNIVERSIDAD DEL SURESTE

DE LOS ORGANELOS

La célula es la unidad minima de un organismo, dentro de ella se llevan a cabo todas las funciones vitales. Existen dos tipos de célula las cuales son procarionte y eucarionte.

PROCARIONTE

encuentran organismos unicelulares, son de menor tamaño, volumen, no es tan compleja y no tiene muchos organelos.

EUCARIONTE

Se encuentra en los animales o vegetales, es de mayor tamaño, volumen, es muy compleja y cuenta con muchos organelos.

BIOENERGÉTICA Y CATALIZADORES BIOLÓGICOS

BIOENERGERTICA

Es una rama especializada que estudia los procesos de transducción de energía en los seres vivos, dada del metabolismo que resultan en la absorción, almacenamiento y la utilización de la energía a nivel celular, subcelular y molecular.

LEYES DE LA TERMODINAMICA

1ra Ley de la termodinámica: Establece que cualquier cambio físico o químico la cantidad de energía permanece constante, o se puede cambiar.

2da Ley de la termodinámica: Establece que todos los procesos naturales la entropía o desorden del universo aumenta.

CICLO ENERGETICO

Se da por medio de los alimentos como los hidratos de carbono, grasa y proteínas. Sirven para las bases de sustentación para la biosíntesis de macromoléculas, y la energía por oxidación.

El ATP es una molécula almacenadora de energía química de los organismos vivos.

METABOLISMO

Es el conjunto de todas las reacciones químicas, catalizadas por enzimas. Funciones:

- 1.Obtener energía química del entorno.
- 2. Transformar las moléculas nutrientes en precursores de macromoléculas.
- 3. Sintetizar las macromoléculas.
- 4. Former/ degradar las biomoléculas necesarias para funciones especializadas de las células.

FASES DEL METABOLIMOS

CATABOLISMO: reacciones las cuales las moléculas orgánicas complejas se desdoblan en sencillas o otras más inorgánicas librando energía que se almacena en el ATP.

ANABOLISMO: Series de reacciones de formación de moléculas orgánicas complejas a partir de otras sencillas utilizando ATP obtenido.

Las enzimas se clasifican según su clase de reacción que cataliza.

- Oxidorreductoras: Catalizan reacciones redox, cambia el estado de oxidación de uno o más átomos en una molécula.
- Transferasas: Transfieren arupo moléculas de una donadora a una aceptadora.
- Hidrolasas: Catalizan reacciones en las que se producen la rotura de enlaces como C-O,C-N,O-P, por la adicción de agua.
- · Liasas: Catalizan reacciones em las que determinan grupos H2O,CO2 para formar un doble enlace.
- Isomerasas: Catalizan varios tipos de reordenamientos intramoleculares.
- Ligasas: Catalizan la formación de enlaces entre dos moléculas y un sustrato.

BIOENERGÉTICA Y CATALIZADORES BIOLÓGICO

CATALIZADORES BIOLOGICOS

catalizadores de naturaleza proteica que aceleran la velocidad de reacción hasta alcanzar un equilibrio.

ESTRUCTURA DE LOS ENZIMAS

Las enzimas son proteínas globulares formadas por una o más cadenas polipeptídicas plegadas, crenado "hondonada" donde encajan el sustrato y tiene una reacción. Esta zona de enzima se denomina centro activo y sólo unos pocos aminoácidos están implicados en el.

INHIBICIÓN ENZIMÁTICA

La actividad de las enzimas puede inhibirse. Las moléculas que reducen la actividad de un enzima, denominados inhibidoresincluyen fármacos, antibióticos, conservadores, alimentarios v veneno.

INHIBICIÓN

Ocurre cuando el efecto inhibitorio de un compuesto puedo contrarrestarse incrementando la concentración de sustrato o retirando el compuesto inhibidor mientras la enzima permanece intacta.

- · Competitiva: si el inhibidor se une a la enzima libre compite con el sustrato por la ocupación del sitio activo.
- No competitiva: si el inhibidor se une a tanto la enzima libre como al complejo enzima sustrato.
- A competitiva: si el inhibidor se une sólo al complejo

INHIBICION RREVERSIBLE

Ocurre cuando la unión al inhibidor altera de manera permanente la enzima, por la reacción covalente que la modifica.

3

UNIVERSIDAD DEL SURESTE

Bibliografía: Información sacada de los apuntes proporcionados en clases de bioquímica dada por la profesora Daniela Monserrat Méndez Guillen y así mismo información de la antología de bioquímica.