

NOMBRE DEL ALUMNO: LIZBETH REYES ULLOA

DOCENTE: EDWIN YOANI LOPEZ MONTES

ASIGNATURA: INMUNOLOGIA

SEMESTRE: CUARTO

PARCIAL: CUARTO

ACTIVIDAD: INFOGRAFIA

FECHA DE ENTREGA: 25 DE MAYO 2024

COMPLEJO MAYOR DE HISTOCOMPATIBILIDAD

PRESENTACION DE ANTIGENOS

PARA QUE LA RESPUESTA ADAPTATIVA PUEDA MOSTRAR TODAS SUS CARACTERISTICAS, LOS ANTIGENOS DEBEN SER PROCESADOS Y PRESENTADOS A LOS LINFOCITOS T CD4 Y CD8

RECONOCIEMIENTO DE **ANTIGENOS**

- ANTICUERPOS Y LINFOCITOS B RECONOCEN ANTIGENOS DIRECTAMENTE
- LINFOCITOS T RECONOCEN FRAGMENTOS **DEL ANTIGENO**

CLASIFICACION DEL MHC

CLASE 1

LAS CELULAS QUE LA PRESENTAN SON LAS CELULAS NUCLEADAS, LA FUENTE DE ANTIGENOS SE ORIGINAN A PARTIR DEL CITOSOL Y SON PRESENTADAS A T CD8+

CLASE 2

LAS CELULAS QUE LO PRESENTAN SON LAS CELULAS PRESENTADORAS DE ANTIGENOS, LA FUENTE DE ANTIGENOS ES QUE PROVIENEN DE LOS ESPACIOS EXTRACELULARES, SON PRESENTADOS A LOS LT CD4+

ESTRUCTURA DEL MHC

CLASE 1

- CADENA A
- MOLECULA B-2 MICROGLOBULINA
- DOMINIO A1 Y A2
- DOMINIO A3

CLASE 2

- CADENA A
- CADENA B
- DOMINIO A1 Y B1

ORGANIZACION Y HERENCIA DEL MHC

CARACTERISTICAS FUNCIONALES

AGRUPACION DE GENES EN EL CROMOSOMA 6, DECIDEN CUALES FRAGMENTOS DE ANTIENO EXTRAÑO SERAN VISTOS Y LA PROMISCUIDAD

MHC EN HUMANO

ES EL COMPLEJO DE ANTIGENO LEUCOCITICO HUMANO (HLA) EN SERES HUMANOS, SE DIVIDEN EN 3 CLASES DEPENDIENDO DE SU CODIFICACION GENETICA (VARIANTES, CLASICAS Y NO CLASICAS)

ORGANIZACION Y HERENCIA DEL MHC

PROPIEDADES GENETICAS DEL MHC

- GENES POLIMORFICOS
- HERENCIA EN HAPLOTIPOS
- EXPRESION CODOMINANTE

INTERPRETACION TERAPEUTICA

F1 ES HISTOCOMPATIBLECON AMBAS CEPAS PARENTALES, NI UNO NI OTRO DE LOS PROGENITORES PUEDE ACEPTAR UN INJERTO DE SU DESCENDENCIA FI

FUNCION DEL MHC

INTERVIENEN EN PROCESOS DE LA INMUNIDAD

- DEMOSTRAR CELULAS SANAS: DESPLIEGA MHC CLASE 1 PARA DEMOSTRAR QUE LA CELULA ESTA SANA
- SELECCION NEGATIVA DE LINFOCITOS T (TOLERANCIA CENTRAL): DESPLIEGA UN PEPTIDO PROPIO EN CLASE 1 Y 2PARA PROBAR CELULAS T EN DESARROLLO
- TOLERANCIA PERIFERICA: DESPLIEGA UN PEPTIDO PROPIO EN CLASES 1 Y 2 PARA MANTENER LA TOLERANCIA A PROTEINAS PROPIAS

CAMBIOS EN LA EXPRESION DE MHC

REGULACION GENETICA

AUMENTO EN LA EXPRESION DE GENES QUE **CODIFICAN PARA MHC**

- CITA
- RFX

ACTIVADORES DE LA TRANSCRIPCION PARA MHC CLASE 2

INTERFERENCIA VIRAL

- REGULACION NEGATIVA DEL MHC
- ALGUNOS VIRUS INTERFIEREN CON LA EXPRESION DE MHC CLASE 1, CITOMEGALOVIRUS, VIRUS DE LA **HEPATITIS B Y ADENOVIRUS 12**

EMISION DE SEÑALES POR CITOCINAS

INDUCEN CASCADAS DE EMISION DE SEÑALES INTRACELULARES

SON LAS PPRIMERAS CITOCINAS QUE DESENCADENAN UN EVENTO DE REGULACION **ASCENDENTE DE MHC CLASE 1**

- IFN-A
- TNF-A

- IFN-Y: SECRETADO POR LT **ACTIVADOS**
- IL-4: AUMENTA LA EXPRESION DE MOLECULAS CLASE 2 EN CELULAS B **EN REPOSO**

2

Proceso
metabólico que
digiere proteinas
hacia peptidos,
pueden ser
desplegados
sobre la superficie
celular

VIA ENDOGENA

 Procesamiento de antígenos endógenos

- Formación de péptidos: Proteasomas, ubiquitina
- transporte de los peptidos del citosol al RER: Transportador TAP

- Enfermedad por deficiencia de TAP
- Los pacientes expresan moleculas de MHC por dbajo de lo normal a causa de los defectos de los genes TAP 1 y TAP 2
- Manifestaciones: Infecciones bacterianas, infeccion cronica de los pulmones, lesiones cutaneas necrosantes sobre las extremidades

PARTICIPACION DE LAS CHAPERONAS

- Calnexina: Junto a proteinas ERp57 se asocian a la cadena a del MHC y promueve su plegamiento
- Calreticulina y tapasina: Tapasina, acerca mucho el TAP permitiendo que el MHC adquiera un peptido antigenico
- ERAP: Es una aminopeptidasa, elimina el residuo amino terminal de los peptidos para alcanzar el tamaño optimo de union al MHC 1

PROCESAMIENTO DE ANTIGENOS


- Se asocia al procesamiento de antígenos exógenos, su unión es al MHC clase 2.
- Fagocitosis del antigeno: Union y reconocimiento, engullimiento
- Formacion de peptidos: El antigeno es degradado hacia peptidos por compartimientos

VIA EXOGENA

Capacidad que
tienen las células
detríticas de
capturar por
fagocitosis células
infectadas por virus
o células tumorales
T CD8+ mediante el
MHC clase 1

PRESENTACION CRUZADA

6

MADURACION DE LINFOCITOS T

ACTIVACION DE LINFOCITOS T

Los LT inician la respuesta inmunitaria adaptativa al interactuar por sus receptores TCR

DESARROLLO TEMPRANO DEL TIMOCITO

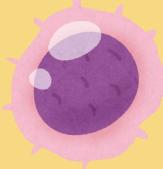
- Compromiso de precursores:
 Final de la etapa DN2, NOTCH,
 timocitos DN1, timocitos DN2,
 timocitos DN3, timocitos DN4
- Reordenamiento de genes:
 Receptores TCRyS o TCRaB

SELECCION +

SELECCION -

 Induce la supervivencia de los linfocitos T Supervivencia de los linfocitos T, se unen con afinidad moderada

MADURACION DE LINFOCITOS T


Proceso por el que las celulas inmaduras precursoras de LT, adquieren un receptor TCR

SELECCION B DURANTE DN3

- Maduracion a la etapa DN4
- Proliferacion rapida en la corteza subcapsular
- Desarrollo hacia la etapa CD4+CD8+ doble + DP
- Cese de la proliferación e inicio del reordenamiento de cadena TCRa

EVENTOS DE SELECCION

- Reconocen al antígeno extraño
- Componentes: Seleccion + y

MADURACION DE LINFOCITOS B

MADURACION

Empieza en la medula ósea con la division asimétrica de una celulas madre hematopoyetica, hasta ser un LB inmaduro

ETAPA DE LAS CELULAS B MADURAS

Recirculan entre la sangre y los organos linfoides, con produccion de anticuerpo

SELECCION + y - DE CELULAS B

Son eliminadas por seleccion negativa y nunca llegan a los foliculos esplenicos. Escapan a la seleccion negativa entran a los foliculos y se difrencian hacia las celulas B T2

Casi todas las celulas B T1 se diferencian hacia las celulas T2 dentro del bazo, al rededor de 25% surge de la medula ósea ya en el estado T2

DESARROLLO DE LINFOCITOS

- Microambiente: Células del estroma, CXCL23, IL-17
- Etapas tempranas en la diferenciación: HSC, (Ikaros, PU.1), celulas madre hematooyeticas, celulas progenitoras multipotencial
- Etapas tardias: Celulas pre-pro B (CD45R) y (EBF1)

CELULAS B B-1 Y DE LA ZONA MARGINAL

- Celulas B B-1: En ausencia de estimulacion antigenica
- Celulas B de la zona marginal: Antigenos transportados por la sangre, son de vida prolongada
- Se encuentran en las cavidades pleural y peritoneal

CLASIFICACION DE CELULAS B TRANSICIONALES T1 Y T2

Se caracterizaron con base en su expresion de receptores de inmunoglobulina y marcadores de

membrana en la superficie celular

INMUNOGLOBULINAS-

MOLECULAS QUE SE UNEN A ANTIGENOS

- Anticuerpos
- Moleculas MHC
- Receptores de LT

ANTIGENO

Cualquier sustancia ajena al organismo

ON ANTIGENO- ANTICUERPO

Proteínas circulantes producidas por células plasmáticas

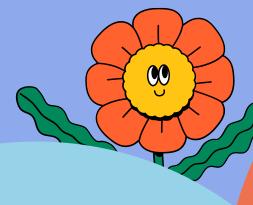
UNION ANTIGENO-ANTICUERPO

Unidos a membrana
Ab secretados
Por:

- Union
- Activacion
- Diferenciacion
- Secrecion
- Eliminacion del A

SEMIVIDA DE ISOTIPOS

• IgE: 2 dias


• IgA: 3 dias

• IgM: 4 dias

• IgG: 21-28 dias

ÁREAS DE OPORTUNIDAD

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua vitae.

BASE QUIMICA DE LA UNION

Implica una union no covalente y rebversible

- Afinidad: Fuerza entre una sola zona
- Avidez: Suma de fuerzas de union

CARACTERISTI CAS'DE LOS ANTIGENOS

- Inmunogeno
- Haptenos
- Epitopo
- Paratopo

CARACTERISTICA DEL RECONOCIMIENTO

- Especificidad
- Reaccion cruzada
- Diversidad
- Maduracion de la afinidad

Lizbeth Reyes Ulloa