EUDS Mi Universidad

SUPER NOTA.

Nombre del Alumno: Ali Otoniel López Morales.

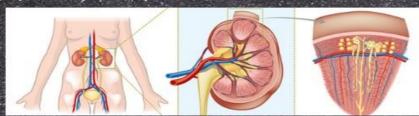
Nombre del tema: El sistema excretor.

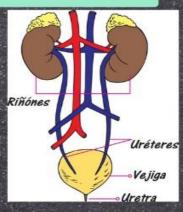
Parcial: Ier. Parcial.

Nombre de la Materia: Anatomía y fisiología II.

Nombre del profesor: Lic. Felipe Antonio Morales Hernández.

Nombre de la Licenciatura: Lic. En enfermería.


Cuatrimestre: 2do cuatrimestre.

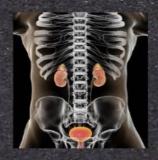

EL SISTEMA EXCRETOR

Esta constituido por 2 riñones, 2 canales excretores para cada uno de ellos (los calices, la pelvis renal y el uréter), la vejiga y la uretra.

LOS RIÑONES Y LA HOMEOSTASIS

Estos órganos ayudan a la homeostasis, conservar la uniformidad o estabilidad y regular la composición del medo interno, es decir de la sangre y de los líquidos corporales.

LOS ORGANOS DEL SISTEMA



Funciona como reservorio en el que llega la orina a través de los uréteres y se acumula en la vejiga y permanece en el intervalo de las micciones

En el hombre se sitúa por encima del piso pélvico y de la próstata, por delante y por arriba del recto y de las vesículas seminales. En la mujer, se sitúa por encima del piso pélvico y por delante del útero y de la vagina.

La capacidad fisiológica de este órgano es de 300 y 350 cm3.

Es el conducto excretor de la vejiga, en el hombre también da paso al esperma. En la mujer, la uretra solo conduce orina y desemboca en el orificio urinario.

Cada riñón mide 12 cm de largo aprox. Es de color rojo café y esta rodeado de una envoltura fibrosa y una capsula adiposa que constituye su principal medio de sustentación.

Ambos riñones se apoyan sobre la pared abdominal posterior, por detrás del peritoneo, uno a la derecha y otro a la izquierda de la columna vertebral, a la altura de las 2 ultimas vertebras dorsales y las 3 primeras lumbares.

URETERES

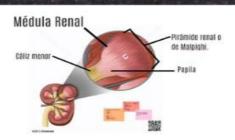
Son 2 conductos de aproximadamente 30 cm de longitud, que siguen a la pelvis renal y se extienden hasta la vejiga. La dirección de los uréteres es oblicua hacia abajo y arriba adentro, ya que los 2 están separados por 7 u 8 cm en su origen y por 2 cm en su terminación.

CONDUCTOS EXCRETORES DEL RIÑON

Se originan en el seno renal en forma de tubos cortos, su función es recoger la orina que conducen los tubos colectores.

ESTRUCTURA INTERNA DEL RIÑON

CAPSULA FIBROSA.


Es una membrana aplicada directamente sobre el parénquima renal, se une al riñón por tractos conjuntivos que penetran al órgano.

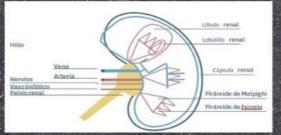
PARENQUIMA RENAL

Se compone de 2 partes: una central llamada medula y otra periférica o corteza.

MEDULA

Representada por zonas triangulares de color rojo oscuro y estriada paralelamente al eje mayor del triángulo. representa la sección de masas cónicas llamadas pirámides de Malpighi. Por cada riñón existen aprox. De 8 a 10 pirámides, cuyos vértices hacen prominencias en el seno y constituyen las papilas renales.

ESTRUCTURA DEL RIÑON

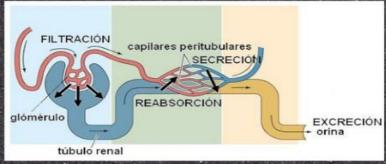

SUSTANCIA CORTICAL

Es de color amarillo rojizo, friable y menos consistente que la sustancia medular; rodea a la pirámide de Malpighi a excepción de las pailas.

La capa periférica de la sustancia cortical se compone de 2 partes: las pirámides de ferrrein y el laberinto.

Son de aspecto estriado como las pirámides de Málpighi y parecen prolongaciones de estas hacia la superficie del riñón. Existen aprox. 500 pirámides de ferrein por cada pirámide de Malpighi.

Es de aspecto granuloso, separa a las pirámides de ferrein entre sí y de la superficie del riñón, además constituye las columnas de Bertín.


FILTRACION

Las paredes de los capilares y la hoja interna de la capsula de Bowman forman una verdadera membrana filtrante. Esta membrana es totalmente permeable al agua, a las sales inorgánicas y a las pequeñas moléculas inorgánicas. Retiene en cambio las células sanguíneas y las grandes moléculas proteicas. En consecuencia, se obtiene un primer liquido llamado orina capsular que tiene una composición semejante a la del plasma.

REABSORCION

La mayor parte de las sustancias filtradas son reabsorbidas por las paredes de los túbulos y se incorporan a la sangre de los capilares peritubulares.

El mecanismo de absorción es un mecanismo activo, es decir, con gasto de energía. La mayor parte del agúa y una parte importante de sales se reabsorben en los túbulos por acción de las hormonàs.

SECRECION

Ocurre con gasto de energía, pero en sentido contrario a la reabsorción. Desde la sangre se vuelcan al túbulo sustancias de desechos celulares tóxicos como la urea, la creatinina, el amoniaco y el ácido úrico.

ANALISIS DE LA ORINA La cantidad de orina elaborada en 24 horas es de aprox. 1.5 litros. Las variaciones dependen de la ingestión de agua y la temperatura. La orina es de color amarillo ámbar y tiene un olor propio de tipo amoniacal. Su pH es acido, entre 4.8 y 6%.

EXCRECION

La orina que sale por los agujeros de las papilas es recibida por los calices que la conducen a la pelvis renal. La orina desciende y es llevada a la vejiga donde llega a razón de 5 a 10 gotas por minuto.

La orina esta compuesta por:

Agua: 95% Ion cloro: 0.58% Ion sodio: 0.33% Ion potasio: 0.15% Ion calcio: 0.015% Sulfatos: 0.18% Fosfatos: 0.15% Amoniaco: 0.04% Urea: 2.5%

Ácido úrico: 0.06% Creatinina: 0.1%

Algunas sustancias pueden aparecer en la orina y pueden significar la presencia de algún problema, por ejemplo:

Glucosa: puede indicar diabetes

Albumina: puede indicar algún problema en el nefron

Sales y pigmentos biliares: puede deberse a algún problema hepático

Leucocitos: infecciones urinarias

Acetona: cuando hay oxidación incompleta de los lípidos.

Sangre: infecciones en los uréteres, la vejiga o el propio riñón

pH muy acido: tener una por dieta preferentemente carnívora.

pH alcalino: por una ingesta excesiva vegetales.

