
1.5 cm de secolon transversal se alarga an 0.070
al someterla a una tensión de 300 kg,
Calcular A=1.5cm 12 mi
a) Esfuerzo 100° cm
$\frac{00005 \text{ m} = 30000}{1 = 3.5 \text{ m} \text{ a cm} = 350} = \frac{A = 0.00015 \text{ m}^2}{4.81}$
1=3.5 m a cm=350 4 1==m.9=(300 kg)(4.81)
A=1.5 cm2 E= 2943 - 18800 # F= 2943 N
DI=0.07cm (80501805000)-19620000 1/mT2
b) Deformación Unitaria
DU= AL DU=0.002
350 cm
c) Modulo de Young
7= F1 J= (294300000) (3900)
A 11 (1.5 cm)(0.07 cm)
* /
2943 100000 OH = 294300000
1 N
4= 9.81 x 10 DIN/cm2
((294300000)x(350)) ÷ ((1.5) (0.07)

un alambre de acero, de 2.7	m de largo y una
sección transversal de	0.15 cm² esta
Sometida a una ten sión	de so kg
d) Enlogación b) tensión	para el lim elastica
51 E= 20×106 din /cm2 y e	1 modulo de volving
a	\
Da-102	1= 12/1 - (490.5) (2.7
E=20 X10 DIH/CM 3	YA (19×10') (0-1
4= 19 × 10" 014/cm	Al=4-646842105X11
b) E- F (490.5) = 327(2
A 0.15cm	1
	2.0
	3270,100000 DN =
0 11	1 N
T= m.9	20 7 000 000
F = (50) (9 81) = 490. SN	= 327,000,000
F=(50)(981)=490.5H	
- 1= 1L	
ADI	

Un alambre de hierro de 1.2 m con una
sección transversal de 100 0.22 cm² está
sujeto a vaa tensión de 4.10 kg
Calcular
ö <u>n alambre de</u> hiefro <u>d</u> e
sujeto q +enS
Deformación
Du= 1.83

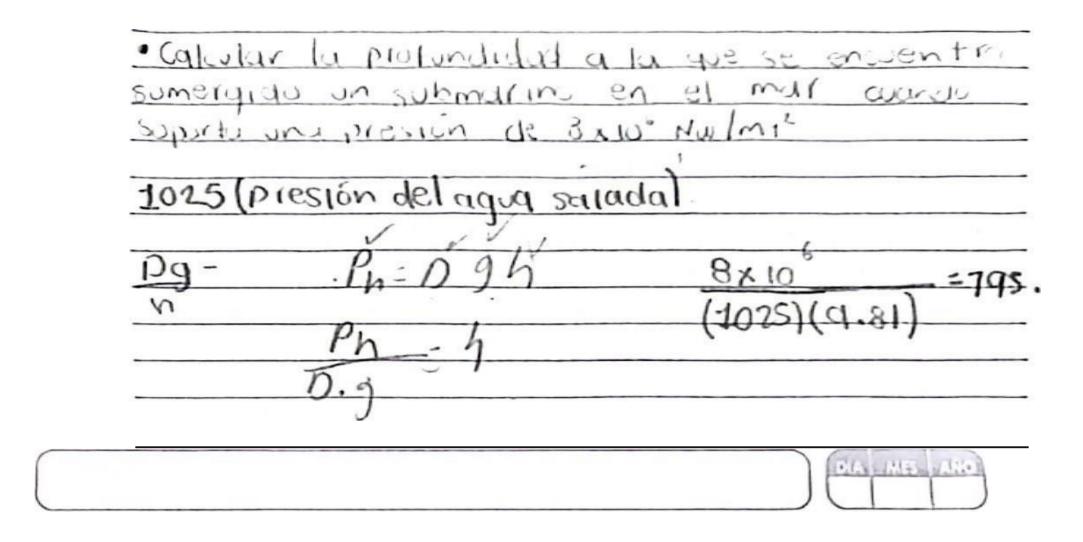
Da105

 $L=1.2=120 \text{ cm}^2$

Scanned with CamScanner Un alambre de alumino de 125 cm de largo 1 2.5 cm de área se suspende del techo. Edué peso soporto en su ex-liemo inferior 51 suffe un alargamiento de 0.5 x 10-4 F=D 1-2 5 cvi

A: '2. Soo

4Y=0-sxp-


Norma

5 2 Cuántos Mt ocupan 2000 kg de alcohol, si este
5 2 Cuántos Mt3 ocupan 2000 kg de alcohol, si este
$V = M$ $V = (1000) - 1.26 \text{ m}^3$
6. ¿ Cúal es el volumen en litros et de 3000 Hw
de aceite de aliva, si su peso específico es de
9016 NW/m+3
m= F 3000 = 305.81 kg/
9 9.81
7. 4.81
es aspirado o empujado?
Existe el "vacio relativo" en el lado de la
boca y la presión atmosférica empuja el
liquido
c/c Par qué los busos, cuando emergen con urgencia,
deben exhalar continuamente durante su
ascensa?
Por la presión disminuye y el alle empleza
a expandirse. Si no expulsos el aire
comprimido revientar tus pulmones

b) los embudos tienen unas estrias que impiden que queden ajustados en la boca de una botella à Cúal es la razón? permite el paso de fluidos de tal manera que sea menos dificil la entrado del líquido Norma

Pe=09	Pe= (29300 kg/m+3) (9.81 m1/s2)
	De= 184333 Nu/mr3
8.51 1500 kg	de plano ocupan un volumen de 0.13274 m² dens idad?
D=M	
	$K9 = 11,300.2 K9 Imt^3$

	a fuerza	anlicaise sohi
cíce	0.3 mT2	exista
presión	de 420 Hw/mT2	•
	176	

De presión hidrostática existirá en una prensa hidráulica si a uno profundidad de 6 mr el agua tiene una densidad de 1000 kg/m²

Ph= D.g.h (1000)(9.81)(6) = 58860 NW/m²

· Cual será la presión hidrostática en el fondo

de un narril que tiene o qui de profinandod
y está lieno de gasolira, coya densidad es de
680 kg/mr³

Ph= Dig.h (680) (9.81) (0.9)=6003.72