REACCIONES DE OXIDACIÓN

Quimica

Sofia Pereyra
Orantes
Quimica Organica
profesora:Luz Elena
Cervantes Monroy
Nutrición

29/Noviembre/2023

REACCIONES DE OXIDACIÓN

Quimica

Reacciones de oxidación de química orgánica

oxidación

CH₄ ← CH₀OH ← HCHO ← HCOOH ← CO₂

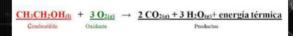
E.O.: -4 -2 0 +2 +4

% O: 0 50 53,3 69,6 72,7

Las reacciones de oxidación son reacciones químicas en las que el compuesto cede o dona electrones a otro. Los alcoholes se oxidan calentándolos con un agente oxidante. Normalmente, este agente oxidante es el dicromato potásico (VI) (Na2Cr2O7).

Oxidación de Alcanos

La combustión de los alcanos es una de las reacciones orgánicas más importantes. La combustión de gas natural, naftas (gasolina) y gasoil o fueloil implica en su mayor parte la combustión de alcanos. constituye un método industrial de obtención de alcoholes y ácidos


4.1.1. Oxidación de alcanos

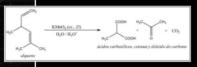
- Combustión;
 - Alcano + O₂ -> CO₂ + H₂O
- Cracking e hidrocracking:

 Alcanos de sadena larga
- Alcanos de cadena larga → Alcanos de cadena corta
- Halogenación
 - CH₄ + Cl₂ → CH₃Cl + CH₂Cl₂ + CHCl₃ + CCl₄

Reacciones de combustión

Un proceso de combustión es un tipo de reacción química exotérmica que origina un proceso de oxidación rápida de elementos combustiblesque están formados, principalmente, por carbono e hidrógeno y en ocasiones, por azufre. A través de dicho proceso, se liberan grandes cantidades de energía térmica.

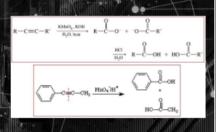
Oxidación de alquenos


La ruptura oxidante de alquenos es un procedimiento químico en el cual un alqueno se descompone mediante la ruptura de su/s doble/s enlace/s carbono-carbono formando compuestos con menor cantidad de carbonos y mayores grados de oxidación.

Ruptura oxidativa con permanganato de potasio

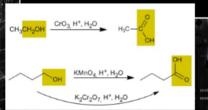
El tetraóxido de osmio y el permanganato de potasio pueden ser utilizados para oxidar alquenos produciendo dioles vecinales (glicoles) syn.

El permanganato de potasio (básico) y el tetraóxido de osmio en piridina son los reactivos utilizados para la dihidroxilación de los alquenos.


Ruptura oxidativa con ozono

La ruptura oxidante por ozonólisis ocurre cuando un alqueno reacciona con ozono a bajas temperaturas formando un ozónido y luego es roto por descomposición reductora o descomposición oxidante.

Mediante la descomposición oxidante se obtienen los mismos productos que con el tratamiento con permanganato.


Oxidación de Alquinos

Los alquinos se oxidan en presencia de permanganato de potasio acuoso para dar tetraoles que evolucionan hacia dicetonas. En medios básicos y bajo calefacción el permanganato rompe el triple enlace para formar carboxilatos.

oxidacion de alcoholes

La oxidación de alcoholes es una reacción orgánica importante. Los alcoholes primarios pueden ser oxidados a aldehídos o ácidos carboxílicos, mientras que la oxidación de alcoholes secundarios, normalmente termina formando cetonas. Los alcoholes terciarios generan olefinas mediante su oxidación

Oxidación de cadenas laterales de compuestos aromáticos

Cuando un compuesto que tiene un grupo alquilo directamente unido a un grupo arilo se trata con un agente oxidante fuerte como el ácido crómico, el carbono bencílico se oxida a un grupo ácido carboxílico que permanece unido al grupo arilo.

Cualquier otro enlace carbonocarbono se rompe.

Oxidación de aminas

Las aminas se oxidan fácilmente, incluso al aire. 2 2 , Aminas 2ª se oxidan a hidroxilamina (-NOH). Aminas 3ª se oxidan a óxidos de amina (-N+-O-).

$$\begin{array}{c} CH_3CH_2NH_2 & \stackrel{\stackrel{..}{.}\overset{..}$$

Bibliografía

https://www.studysmarter.es/resumenes/quimica/quimica-organica/reacciones-de-

oxidacion/#:~:text=Las%20reacciones%20de%20oxidación%20so n,2Cr2O7).

https://www.bbva.com/es/sostenibilidad/los-procesos-decombustion-y-el-futuro-de-los-combustibles-

fosiles/#:~:text=Un%20proceso%20de%20combustión%20es,gran des%20cantidades%20de%20energ%C3%ADa%20térmica.

https://es.wikipedia.org/wiki/Ruptura_oxidativa_de_alquenos#:~:text=La%20ruptura%20oxidante%20de%20alquenos,y%20mayores%20grados%20de%20oxidación.

https://www.quimicaorganica.net/oxidacion-alquinospermanganato-

https://www.quimicaorganica.org/alcoholes/418-oxidacionde-alcoholes.html

https://espanol.libretexts.org/Quimica/Qu%C3%ADmica_Orgán ica/Libro%3A_Qu%C3%ADmica_orgánica_-Un enfoque "carbonil temprano"

__Un_enfoque_"carbonil_temprano"
_(McMichael)/01%3A_Cap%C3%ADtulos/1.32%3A_0xidaciones_de_
cadenas_laterales%2C_fenoles%2C_arilaminas#:~:text=0xidac
ión%20de%20cadena%20lateral,-

Hay%20otra%20reacción&text=Cuando%20un%20compuesto%20que%20tiene,enlace%20carbono%2Dcarbono%20se%20rompe.