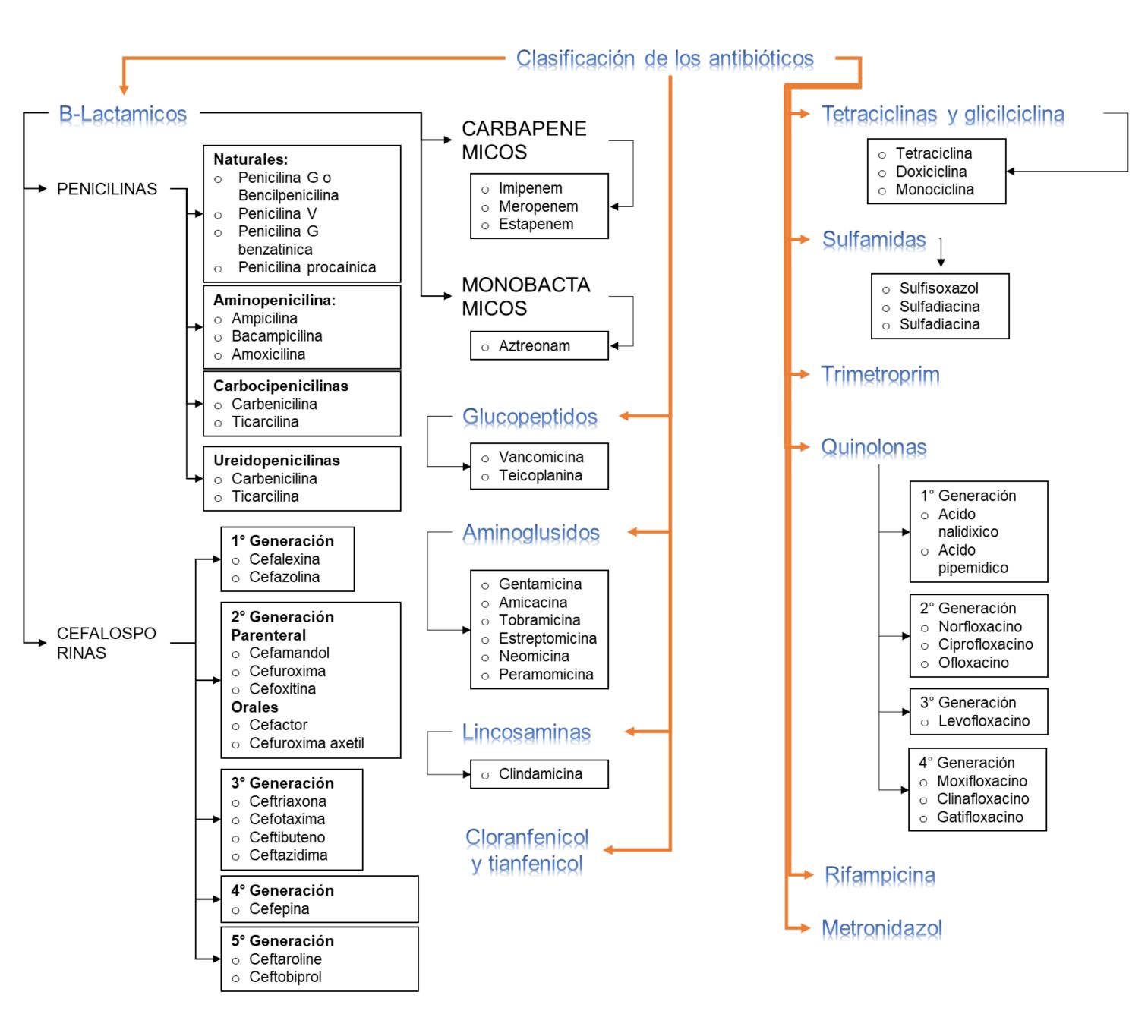


Francisco Javier Pérez López


OMAIDA NATIVIDAD MONTES VAZQUEZ

"Antibióticos"

Materia: Enfermedades infecciosas

PASIÓN POR EDUCAR

Grado: 6° semestre

Clasificación de los antibióticos

B-Lactamicos

MONOBACTA MICOS

celular.

→ PENICILINAS

Inhiben el crecimiento bacteriano al interferir con la reacción de transpeptidación de la síntesis de la pared celular bacteriana. Análogos estructurales del sustrato de D-Ala-D-Ala natural, se une covalentemente al sitio activo de las PBP y detiene la síntesis de peptidoglucano y la célula muere. Inhiben las enzimas transpeptidasas que catalizan el paso final de formación de enlaces cruzados en las síntesis de los peptidoglucanos.

Glucopeptidos

Contiene un grupo sulfónico, es

bactericida, inhibe el tercer y

ultimo paso de la síntesis de la pared celular, uniéndose de

formar irreversible a PBP-3,

responsable de la formación del

septum durante la división

Bactericida. Se une a los precursores de la pared celular de las bacterias, el resultado final es una alteración de la permeabilidad de la pared celular, además, inhibe la síntesis del RNA bacteriano.

CEFALOSPO RINAS

Bactericida. Inhibe la tercera y ultima etapa de la síntesis de la pared celular bacteriana uniéndose preferentemente a las proteínas de unión a penicilina (PBP). Similares alas penicilinas pero son más estables a muchas betalactamasas bacterianas, tienen un espectro de actividad más amplio

Aminoglusidos

Se unen a la subunidad ribosómica bacteriana 30 S y alteran la decodificación de mARN, por lo tanto, la síntesis de proteínas.

CARBAPENE MICOS

Bactericida. Inhibe la tercera y última etapa de la síntesis de la pared celular bacteriana mediante la unión a PBPs, tiene mayor afinidad por PBP2 y 1B PBP, las PBP-3.

Lincosaminas

Se une a la subunidad 50 S de los ribosomas bacterianos, inhibiendo la síntesis de proteínas. Puede ser bacteriostático o bactericida.

Cloranfenicol y tianfenicol

Se une a la subunidad 50 S de los ribosomas bacterianos, inhibiendo la formación de enlaces peptídicos. También inhibe la síntesis de proteína mitocondrial en las células bacterianas y de mamíferos a través de sus efectos sobre el ribosoma 70 S.

Tetraciclinas y glicilciclina

 Actúan fijándose a la subunidad 30s del ribosoma impidiendo el acceso de los aminoacil-t-ARNs que no puede unirse a la proteína en crecimiento.

Sulfamidas

Análogo estructural antagonista del PABA (ácido p-amino benzoico), impide la utilización de este compuesto para la síntesis de acido fólico. Actúa en la síntesis de timina y purina.

Trimetroprim

Interfiere con la síntesis de folato, se une firmemente ala dihidrofolato-reductasa, esta acción interfiere con la absorción del PABA para originar acido fólico , componente esencial para el desarrollo bacteriano.

Quinolonas

Interfiere con la ADN-polimerasa (enzima responsable de contrarrestar el superenrollamiento excesivo del ADN durante la replicación y transcripción. bacteriana, interfiriendo con la síntesis de ADN.

Rifampicina

Se une a la subunidad beta de la DNAdependiente, impidiendo que esta enzima se una al DNA, bloqueando la transcripción del RNA. Puede ser bacteriostática o bactericida.

Metronidazol

Es amebicida, bactericida y tricomonicida, actúa sobre las proteínas que transportan electrones en la cadena respiratoria de las bacterias anaerobias, además se introduce entre las cadenas de ADN inhibiendo la síntesis de ácidos nucleicos.

Bibliografía

Katzung , B. G. (2019). Farmacología básica y clínica. Ciudad de México: McGRAW-HILL/INTERAMERICANA EDITORES, S.A. de C.V.