

LICENCIATURA EN MEDICINA VETERINARIA USO DEL MICROSCOPIO COMPUESTO

NOMBRE: Ingrid Anzueto Reyes FECHA: 25/ 01/ 2022

OBJETIVO:

El objetivo de la práctica es conocer el uso del microscopio.

Identificar sus partes, conocer y distinguir los diversos tipos de microscopios, y ver a través de él, cortes a nivel celular, esto con el fin de conocer una perspectiva microscópica de varios procesos que no podemos observar a simple vista.

MATERIALES:

- Microscopio
- Porta y cubreobjetos
- Caja Petri
- Pinza de disección
- Pipeta Pasteur
- Aguja de disección
- Caja de Material

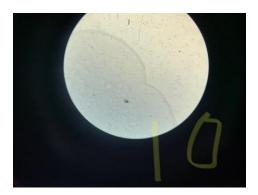
MATERIAL BIOLÓGICO

Muestra de la PROTOZOARIOS Y HONGOS

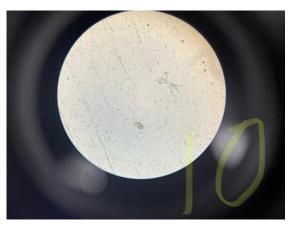
PROCEDIMIENTO:

- 1. Realizar observaciones de los materiales que hay en el laboratorio
- 2. Distinguir los tipos de microscopios
- 3. Hacer observaciones microscópicas de diferentes muestras
- 4. Ilustrar dichas observaciones

¿Cómo se hacen preparaciones para la observación al microscopio?

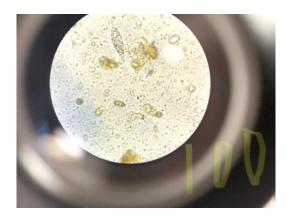

- 1.- En un portaobjetos limpio, coloca la muestra a observar. Si la muestra es líquida no requiere de una gota de agua, si la muestra está seca coloca una gota de agua, como medio de refracción de la luz.
- 2.- Coloca un cubreobjetos sobre la muestra
- 3.- Coloca la preparación sobre la platina, sujeta con la pinza y luego inicia la observación.

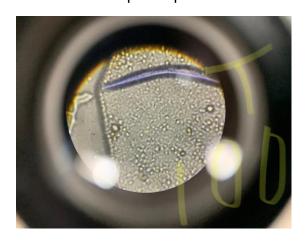
OBSERVACIONES:


En ésta sección deberás ilustrar cada campo visual que observes al microscopio, con la intención de que describas cada uno de ellos e indiques con que objetivo se observó 10/40/ o 100/

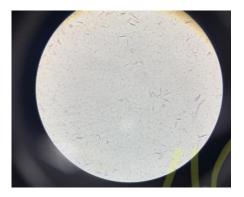
1. Agua de flores en panteón

Recipiente 1: Esta muestra fue observada en el objetivo 10 (Seco débil), hubieron pocos protozoarios vivos, en 6:30 sobre las manecillas del reloj se pudo observar uno.


Recipiente 2: Fue observado en el objetivo 10 (seco débil), fue un protozoario redondo, observado en 6:15 sobre las manecillas del reloj.


Se observó un protozoario de cadena larga en el objetivo 40 (Seco fuerte),

Fue observado un protozoario (Sternor) en el objetivo 100, que movía sus cilios, se observó en las 11:40 sobre las manecillas del reloj.



 Agua de estanque de ganado.
 Se observó en el objetivo 40(seco fuerte, fue un protozoario de cadena larga a las 5 y 6 sobre las manecillas del reloj, en el objetivo 100 se observó más de cerca en el que se pudo ver su núcleo y membrana

3. Agua de florero


En el objetivo 40 (seco fuerte) y 100, se logró visualizar en movimiento.

Agua de laguna. Con el objetivo 10 (Seco débil). Pude distinguir que eran bacilos y cocos.

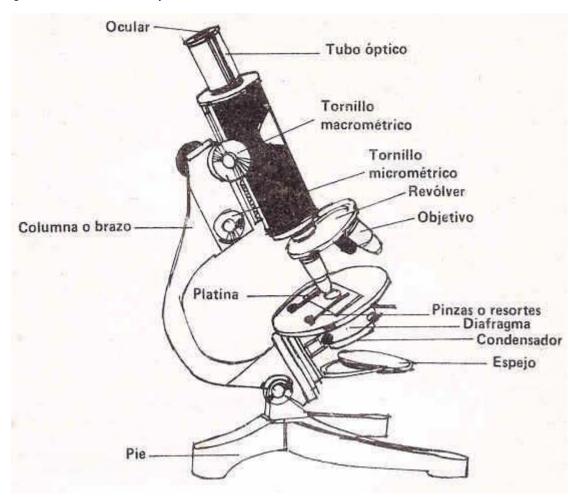
Tomate Con los objetivos 10 (seco débil), y 40 (seco fuerte) y 100, pude observar Hongos y bacterias moviéndose.

RESULTADOS.

Si logre el objetivo de la práctica, ya que pude observar protozoarios de distintas muestras de agua a través del microscopio de manera que al ponerle más aumento al lente del microscopio, podía ver más a detalle la estructura del protozoario.

CONCLUSIONES.

Es impresionante poder saber y observar a aquellos seres pequeños, que no son vistos a simple vista pero pueden causar grandes infecciones tanto al ser humano como a los seres no humanos, a lo largo de la práctica observe en algunas muestras como habían demasiados protozoarios en una sola muestra de agua, a lo que lleva que pueden reproducirse en gran cantidad, y buscan tener respiración y alimento para seguir reproduciéndose


CUESTIONARIO.

- 1.- ¿Qué objetivo se utiliza al iniciar la observación en el microscopio? R= el lograr observar a los seres microscópicos que se encuentran en la muestra, que tipo es, si tiene núcleo, y de qué color es.
- 2.- ¿En dónde se forma la imagen y cómo? R= se forma colocando la muestra en portaobjetos, después cubriéndolo con cubreobjetos, se ajusta en la platina, y a través del lente del microscopio observamos, también ajustando el aumento del lente.
- 3.- ¿Qué color presentan las células en estado natural y por qué? R= Se presentan de color verde y en algunos casos transparentes
- 4.- ¿Qué tipo de preparación realizaste? R= Fue una preparación en fresco.
- 5.- ¿Qué observaste dentro de la célula?
 - En la primera muestra, el color de la célula era amarilloso con sus órganos v membranas verdes.
 - En la muestra 2 el color era verdoso con una membrana morada y órganos en color lila.
 - En la muestra 3 el color era amarilloso con órganos verdes.
 - En la muestra 4 fue una bacteria coco en color amarillo y verde
 - Muestra 5 fue un protozoario en color entre celeste y azul, con órganos verdes y membrana azul.
 - Muestra 6 en esta se observaron bacterias en color gris, aunque solo se pudo observar en el lente 10.

DOCUMENTO DE APOYO PARA LA PRÁCTICA

ANTECEDENTES:

¿Qué es el microscopio?

El microscopio de micro-, pequeño, y scopio, σκοπεω, observar, es un instrumento cuya función es permitir observar la imagen de un objeto u organismo que son demasiado pequeños para ser vistos a simple vista.

El microscopio está especialmente diseñado para el estudio de objetos tan pequeños que no pueden ser observados a simple vista. Actúa como una extensión de nuestro sentido de la vista, dándonos la oportunidad de conocer un mundo que permaneció invisible a los humanos Hasta antes de su invención

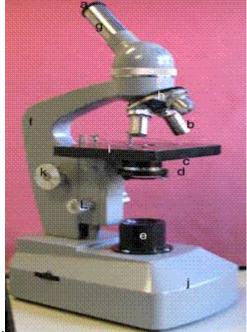
Todos los microscopios tienen una estructura con un brazo y una base. A esta estructura se unen las demás partes. La plataforma donde se coloca lo que se quiere observar se denomina platina. En la base de la mayoría de los microscopios hay una fuente de luz. Su lámpara posee un regulador de voltaje para variar la intensidad de la luz. Casi todos los microscopios disponen

De algún sistema para reducir la intensidad de la luz.

Los botones de ajuste grueso (macrométrico) y ajuste fino (micrométrico) se encuentran situados de forma concéntrica a los lados del microscopio; se emplean para enfocar los objetos que se observan.

El sistema óptico de un microscopio consta de objetivos, oculares y condensador.

El microscopio es un sistema de amplificación de dos niveles, en el cual el espécimen es amplificado primeramente por un complejo sistema de lentes del objetivo y de nuevo por una segunda lente en el ocular. La capacidad de amplificación total del instrumento es el producto de las amplificaciones logradas por el objetivo y el ocular.


Uso del microscopio

Con frecuencia la Ciencia y la Técnica van de la mano, casi todos los avances científicos han sido el resultado de nuevos avances técnicos, esto es particularmente ilustrativo en lo referente al uso del microscopio. Al descubrimiento de la célula se llegó gracias a una serie de descubrimientos científicos que estuvieron ligados a la mejora de la calidad de los microscopios. Uno de los pioneros en la construcción de estos aparatos fue Anton van Leeuwenhoek.

¿Cómo es un microscopio?

El microscopio es un aparato que aumenta la imagen de los objetos y nos permite observar aquello que, en un principio, es invisible para el ojo humano. Fue utilizado por primera vez, como tal, por el holandés Anton van Leeuwenhoek el año 1675.

Tiene dos partes: una óptica, para observar, y otra mecánica, que sostiene a la

primera.

La parte óptica consta de:

- Ocular, lente situada cerca del ojo del observador.
- Objetivo, lente situada cerca del objeto que se quiere observar.
- Diafragma, dispositivo para graduar la entrada de luz.
- Condensador, dispositivo para concentrar la luz sobre el objeto.
- Foco de luz o espejo, para iluminar el objeto.
- La parte mecánica del microscopio consta de:
- Columna, parte que sostiene el tubo óptico.
- Tubo óptico, donde se encuentra ubicado el ocular.
- Revólver, parte móvil que sostiene los objetivos.
- Platina, que soporta el portaobjetos.
- Pie, sostiene todo el microscopio.
- Tornillo macro métrico, que permite desplazamientos rápidos de las lentes.
- Tornillo micro métrico, que permite desplazamientos suaves de las lentes.

¿Cómo se utiliza el microscopio?

El objeto que queremos observar se coloca en un vidrio transparente que llamamos portaobjetos, y lo cubrimos con otro vidrio más fino que llamamos cubreobjetos.

Una vez conocido el funcionamiento de les partes del microscopio debes saber que el aumento que nos ofrece un microscopio se obtiene con la combinación del objetivo y del ocular. Por ejemplo, si tenemos un ocular de 15x i un objetivo de 40, el aumento obtenido es de:

 $40 \times 15 = 600 \text{ aumentos}$.

El enfoque del objeto se realiza con el tornillo macrométrico, y después se afina con el tornillo micrométrico, hasta conseguir una visión perfecta. Una vez enfocado el objeto, se pasa al objetivo inmediatamente superior, hasta obtener el aumento deseado. Cada vez que cambies de objetivo cuida de no tocar la preparación, el vidrio se puede romper.

La luminosidad para observar la muestra la puedes regular moviendo el diafragma hasta conseguir la más adecuada para cada caso.

Como unidad de medida, en microscopia se utiliza la micra (µ). Su equivalencia es:

 $1\mu = 1/1000$ mm; por tanto, 1 mm = 1000 μ

¿Cómo se prepara una observación microscópica?

Para observar perfectamente un objeto es necesario someterla a un proceso de preparación que destaque aquellas partes que nos interesen. También, que

conserve la muestra para observaciones posteriores. Dos fases de este proceso son: la fijación y la tinción.

Con la fijación se consigue que la muestra que queremos observar no se mueva. Se suele utilizar diferentes líquidos: alcohol etílico 70%, ácido acético...; también se utilizan altas temperaturas que ayudan a deshidratar la muestra. El objeto, una vez fijado, debe lavarse en un medio apropiado como alcohol o agua.

La tinción consiste en colorar la muestra que queremos observar para, así, destacar aquellas partes que nos interesen observar. La gama de colorantes es muy variada, y cada uno resalta una parte diferente del objeto. Los colorantes siguientes suelen utilizarse para resaltar las partes de la célula:

- La estructura celular: azul de metileno, orceína acética.
- El citoplasma celular: eosina, fucsina ácida, verde luz.
- El núcleo celular: fucsina básica, verde metilo.

Tipos de microscopio

*Un microscopio compuesto es un aparato óptico hecho para agrandar objetos, consiste en un número de lentes formando la imagen por lentes o una combinación de lentes posicionados cerca del objeto, proyectándolo hacia los lentes oculares u el ocular. El microscopio compuesto es el tipo de microscopio más utilizado.

Microscopio Compuesto

*Un microscopio óptico, también llamado "microscopio liviano", es un tipo de microscopio compuesto que utiliza una combinación de lentes agrandando las imágenes de pequeños objetos. Los microscopios ópticos son antiguos y simples de utilizar y fabricar.

Microscopio Óptico

*Un microscopio digital tiene una cámara CCD adjunta y está conectada a un LCD, o a una pantalla de computadora. Un microscopio digital usualmente no tiene ocular para ver los objetos directamente. El tipo triocular de los microscopios digitales tienen la posibilidad de montar una cámara, que será un microscopio USB.

Microscopio Digital

*A microscopio fluorescente o "microscopio epi-fluorescente" es un tipo especial de microscopio liviano, que en vez de tener un reflejo liviano y una absorción utiliza fluorescencia y fosforescencia para ver las pruebas y sus propiedades.

Microscopio Fluorescente

*Un microscopio electrónico es uno de los más avanzados e importantes tipos de microscopios con la capacidad más alta de magnificación. En los microscopios de electrones los electrones son utilizados para iluminar las partículas más pequeñas. El microscopio de electrón es una herramienta mucho más poderosa en comparación a los comúnmente utilizados microscopios livianos.

*Un microscopio estéreo, también llamado "microscopio de disección", utilice dos objetivos y dos oculares que permiten ver un espécimen bajo ángulos por los ojos humanos formando una visión óptica de tercera dimensión.

Microscopio Estereo

La mayoría de los microscopios livianos compuestos contienen las siguientes partes: lentes oculares, brazo, base, iluminador, tablado, resolving nosepiece, lentes de objetivo y lentes condensadores. Detalles de las parte del microscopio... Partes del microscopio

La cámara de microscopio es un aparato de video digital instalado en los microscopios livianos y equipados con USB o un cable AV. Las cámaras de microscopio digitales son habitualmente buenas con microscopios trioculares