

Nombre del alumno:

Jhoan de Jesús Morales Jiménez

Nombre del profesor:

NOE HERMINIO VELAZQUEZ RECINOS

Nombre del trabajo:

Proteínas de relevancia clínica

Materia: BIOQUIMICA

Grado: 1

Grupo: "A"

Lugar y Fecha de elaboración Frontera Comalapa, Chiapas; a 15 noviembre 2021

Describir la estructura general de los aminoácidos: están compuestos por una molécula orgánica con un grupo amino y un grupo carboxilo. Se componen de carbono, carboxilo, un grupo amino, un hidrogeno y una cadena lateral.

Como están unidos los aminoácidos: se unen linealmente mediante uniones peptídicas, que se forman por la reacción de síntesis entre el grupo carboxilo del primer aminoácido con el grupo amino del segundo aminoácido.

Esquema de la unión peptidica de dos aminoácidos.

Describir los niveles de estructura de las proteínas (primarias, secundarias, terciarias y cuaternarias):

 Estructura Primaria Está constituida por la secuencia de aminoácidos de la cadena polipeptídica. Las proteínas se diferencian por: o El número de aminoácidos o El tipo de aminoácidos o El orden en que se encuentran los aminoácidos dispuestos. (Cualquier alteración en el orden de estos aminoácidos determinará una proteína diferente).

- 2. Estructura Secundaria La estructura secundaria es el plegamiento que forma la cadena polipeptídica debido a la formación de puentes de hidrógeno entre los átomos que forman el enlace peptídico. Los puentes de hidrógeno se establecen entre los grupos -CO- y -NH- del enlace peptídico. En este caso el -CO- actúa como aceptor de H y el NH como donador de H, de esta manera, la cadena polipeptídica adoptará conformaciones de mayor estabilidad.
- 3. Estructura Terciaria La estructura terciaria ocurre cuando existen atracciones entre Láminas 8 y Hélices-\mathbb{\textsupers}. Esta estructura es específica para cada proteína y determinará la función de dicha proteína. Los cuatro ejes del consumo de proteínas ¿Por qué? ¿Cuánto? ¿Quién? ¿De dónde? 7 Para dar lugar a la estructura terciaria es necesario que primero se agrupen conjuntos de estructuras denominadas dominios, que luego se articularan para formar la estructura terciaria definitiva. Se le llama dominio a las regiones de la proteína que tienen una estructura secundaria definida. La estructura terciaria da lugar a dos tipos de proteínas: "Proteínas con estructura terciaria de tipo fibroso: las hélices-\mathbb{\textsupers} o láminas \mathbb{\textsupers} que lo conforman, mantienen su orden y no tienen grandes modificaciones, solo ligeros giros longitudinales". "proteínas con estructura terciaria de tipo globular su forma es aproximadamente esférica. En este tipo de estructuras se forman regiones con estructuras al azar, hélices-\mathbb{\textsupers} y láminas \mathbb{\textsupers} y acodamientos".
- 4. Estructura Cuaternaria La estructura cuaternaria implica la interacción de más de una cadena polipeptídica. Es, por lo tanto, la asociación de diferentes subunidades para formar complejos funcionales, en forma de dímeros, (unión de dos monómeros) trímeros (unión de tres monómeros), etc

Estructura de las Proteínas

	UBICACION	ESTRUCTURA	FUNCION	IMPORTANCIA
ALBUMINA	En el plasma	585	Mantiene el	Para saber el
	sanguíneo.	aminoácidos con 17 puentes	liquido dentro del torrente	funcionamiento del hígado o de nuestro
		de disulfuro.	sanguíneo, sin	perfil metabólico
		de disdiraro.	que se filtre a	completo.
			otros tejidos.	
HEMOGLOBINA	En el interior	Masa	Transportar	Fijar el oxigeno para
	de los	molecular 64.4	oxigeno desde	ser intercambiado en
	eritrocitos.	kDa, 141	los pulmones	los pulmones por
		aminoácidos, y	hacia los	dióxido de carbono.
		globina de 146	capilares del	
INMUNOBLOBUL	En la sangre	aa. Por 4 cadenas	tejido. Neutralizar y	Producen anticuerpos
INA	y el liquido	polipeptídicas	eliminar virus y	producidos en
INA	linfático.	ponpopulation	bacterias que	respuesta de la
	200000000000		penetran en el	presencia de alguna
			organismo.	infección.
INSULINA	En el	Por 2 cadenas,	Permite que la	Regula el nivel de
	páncreas.	21 aminoácidos	glucosa penetre	azúcar en la sangre.
		y 30 aminoácidos.	en las células	
		aminoacidos.	para ser utilizada como fuente de	
			energía.	
TRIPSINA	En el	223 residuos	Degradar	Regular el
	páncreas.	de aminoácidos	proteínas en el	funcionamiento del
	<u> </u>		estómago	aparato digestivo.
COLÁGENO	Huesos,	1000	Estructura a la	Crear y mantener
	tendones,	aminoácidos de	piel y fortalecer	firme la estructura de
	cartílagos,	diferentes	los huesos.	nuestros tejidos
	piel, etc.	tipos.		