

Cuestionario

NOMBRE DEL ALUMNO: Brenda Nayeli Moreno Hernandez

TEMA: Proteinas de Relevancia Clinica

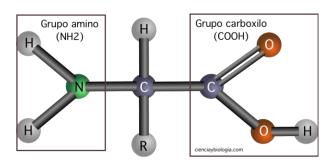
PARCIAL: II

MATERIA: Bioquimica

NOMBRE DEL PROFESOR: Noé Herminio Velázquez Recinos

LICENCIATURA: Lic. En Enfermeria

CUATRIMESTRE: I


Contestar el siguiente cuestionario:

¿Describir la estructura general de los aminoácidos?

Los aminoácidos constituyen la base estructural de los péptidos y proteínas. Desde el punto de vista químico estos productos se caracterizan por poseer un grupo carboxilo – COOH unido a un grupo amino –NH2 unidos a un mismo carbono, denominado carbono alfa.

¿Cómo están unidos los aminoácidos?

Los aminoácidos se encuentran unidos linearmente por medio de uniones peptídicas. Estas uniones se forman por la reacción de síntesis (vía deshidratación) entre el grupo carboxilo del primer aminoácido con el grupo amino del segundo aminoácido.

¿Describir los niveles de estructura de las proteínas (primaria, secundaria, terciaria y cuaternaria)?

- 1- La secuencia lineal de aminoácidos, dictada por la información hereditaria contenida en la célula para esa proteína, se conoce como estructura primaria de la proteína.
- 2- A medida que la cadena se ensambla, comienzan a ocurrir interacciones entre los distintos aminoácidos de la proteína, se establecen interacciones por puentes de hidrógeno entre el hidrógeno ligeramente positivo del grupo amino de un aminoácido y el oxígeno ligeramente negativo del carbonilo de otro aminoácido, se

- forman dos tipos de estructuras: hélice α y lámina β . Ambas estructuras forman la estructura secundaria de la proteína.
- 3- A medida que la molécula se tuerce y entra en solución, los grupos R hidrofóbicos tienden a agruparse en el interior de la molécula y los grupos R hidrofílicos tienden a extenderse hacia fuera en la solución acuosa. Se forman puentes de hidrógeno que enlazan segmentos del esqueleto de aminoácidos. La estructura tridimensional que resulta se denomina es la denominada estructura terciaria de la proteína. En muchas proteínas la estructura terciaria hace que toda la molécula adquiera una estructura globular que se pliega de manera complicada, formando las proteínas globulares. Las enzimas, los anticuerpos son ejemplos de proteínas globulares.
- 4- Muchas proteínas están compuestas por más de una cadena polipeptídica. Éstas cadenas pueden permanecer asociadas por puentes de hidrógeno, puentes disulfuro, fuerzas hidrofóbicas, atracciones entre cargas positivas y negativas. Estas proteínas se llaman multiméricas. La proteína de insulina es un dímero, compuesta por dos cadenas polipeptídicas. Éste nivel de organización de las proteínas, que implica la interacción de dos o más polipéptidos, se llama estructura cuaternaria. El plegamiento de las cadenas polipeptídicas está organizado y dirigido por otro grupo de proteínas llamadas chaperones moleculares.

Completar la información del siguiente cuadro:

	UBICACIÓN	ESTRUCTURA	FUNCIÓN	IMPORTANCIA
Albúmina	Plasma sanguíneo	Está constituida por 585 a.a. con 17 puentes disulfuro entrecruzados en su molécula	ayuda a mantener el líquido dentro del torrente sanguíneo sin que se filtre a otros tejidos	Regula la presión oncotica, ayuda al metabolismo, transporta hormonas, controla el PH
Hemoglobina	Interior de los glóbulos rojos (eritrocitos)	formado por la unión de cuatro cadenas polipeptídicas, dos de tipo α -globina de 141 aminoácidos (aa) y dos de tipo β -globina	transporta oxígeno desde los pulmones a los tejidos y órganos del cuerpo	Gracias a la hemoglobina se puede transportar CO ₂ y oxigeno además de trasportar protones ²
Inmunoglobulinas	En la sangre y en el liquido linfatico	formadas por cuatro cadenas polipeptídicas. Las cadenas pesadas y las cadenas ligeras	neutralizar y eliminar los virus y las bacterias que penetran en el organismo	Se producen anticuerpos para los virus y microorganismos
Insulina	en el páncreas en los islotes de Langerhans	formada por 2 cadenas, una de 21 aminoácidos, la A y otra de 30 aminoácidos, la B	permite que la glucosa penetre en las células para ser utilizada como fuente de energía	Regular los niveles de azúcar en la sangre.
Tripsina	Páncreas	compuesta por 223 residuos de aminoácidos	actúa en el duodeno hidrolizando péptidos en sus componentes estructurales básicos,	son las que digieren las proteínas en el intestino delgado
colágeno	tipo I: huesos y tendones tipo II: cartílago tipo III:Piel, intestinos	mediante una triple hélice compuesta por tres cadenas de polipéptidos enroscadas una sobre otra.	proporcionar estructura a la piel y fortalecer los huesos.	estructura, firmeza y elasticidad a la piel y mantiene la salud de tus músculos, ligamentos, tendones y articulaciones.