

EJERCICIO DE REFORZAMIENTO

NOMBRE DEL ALUMNO: ANA MARIA GONZALEZ ROBLERO.

TEMA: INTERVALOS DE CONFIANZA

PARCIAL: I

MATERIA: ESTADISTICA INFERENCIAL.

NOMBRE DEL PROFESOR: ING. JOEL HERRERA ORDOÑEZ.

LICENCIATURA: PSICOLOGIA.

CUATRIMESTRE: CUARTO.

EJERCICIOS DE REFORZAMIENTO (TAREA)

Ejercicio 1. Se tomó una muestra de 35 empleados de una empresa que en promedio tiene un salario diario de \$133, con una desviación estándar muestral de \$6. Haga una estimación de intervalo con un nivel de confianza de 95% para el promedio de salario diario del total de trabajadores de la empresa.

$$IC = X \pm Z \left[\frac{s}{\sqrt{n}} \right]$$

DATOS:

X= 133

Z= 95%=1.96

S= 6

n = 35

IC= $133 \pm 1.96 \left[\frac{6}{\sqrt{35}} \right]$

IC= $133 \pm 1.96 [1.0141]$

IC= 133 ± 1.9876

IC = 133 - 1.9876 = 131.0124

IC= 133 + 1.9876 = **134.9876.**

Conclusión: Con un nivel de confianza del 95% se concluye que el promedio de salario mínimo diario de los trabajadores de la empresa se encuentra entre **131.0124 y 134.9876** pesos.

Ejercicio 2. Como prueba de un nuevo alimento para perros se revisan las ventas durante un mes en tiendas de autoservicio; los resultados de una muestra de 36 tiendas indican ventas promedio de \$12,000 por tienda con desviación estándar de \$800. Haga una estimación de intervalo con un nivel de confianza del 95% para el promedio real de ventas para este nuevo alimento para perros.

$$IC = X \pm Z \left[\frac{s}{\sqrt{n}} \right]$$

DATOS:

X=12,000

Z= 95% = 1.96

S= 800

n= 36

IC= 12,000 ± 1.96 $\left[\frac{800}{\sqrt{36}}\right]$

 $IC= 12,000 \pm 1.96 [133.3333]$

IC= 12,000 ± 261.3332

IC= 12,000 - 261.3332 = 11,738

IC= 12,000 + 261.3332 = **12,261**

Conclusión: Con un nivel de confianza del 95% se concluye que el promedio real de ventas del nuevo alimento para perros es de 11,738 y 12,261 pesos