Interpretación de gases arteriales

Oxigenación y ventilación

Para evaluar la oxigenación en los gases arteriales lo más aconsejable es utilizar la presión arterial de oxígeno (PaO₂) y la saturación de oxígeno (también puede ser la tomada por pulsoximetria). Sin embargo, también se han creado índices especiales para ayudar a clasificar las alteraciones de la oxigenación

Saturación de oxígeno (SO₂)

a). Los valores normales para una adecuada presión alveolar de oxígeno son 94 a 97% a nivel del mar. Éste disminuye en relación de forma lineal hasta un cierto valor, evidenciando que si un paciente tiene 75% de saturación. la PaO₂ es aproximadamente 40 mmHg, ello condicionado por diferentes condiciones como el estado hemodinámico del paciente, hipotermia y vasoconstricción.

Presión arterial de oxígeno

En los gases arteriales utilizamos la PaO2 como una medición directa del oxígeno en la sangre. Este representa el 5% del oxígeno que hay en la sangre. Cuando está por debajo de 60 mmHg (80 mmHg a nivel del mar) es una indicación de que el paciente requiere un apoyo para mejorar la saturación. También está condicionada por muchas variables y cuando se tiene dudas, se puede utilizar la fórmula PaO₂ esperada. Una vez establecida una alteración debe clasificarse en normoxia, hipoxia, hiperoxia o hipoxemia, dependiendo de los criterios que se reúnan

PaFI (Índice de Kirby)

Es la relación entre la PaO₂ y la FIO₂, denotando la eficiencia del pulmón para oxigenar la sangre. Nos muestra si existe alteración entre el intercambio gaseoso y evalúa la gravedad de la falla ventilatoria (4). A nivel del mar se considera como normal superior a 300.

Diferencia alveoloarterial P(A-

Cuando es superior a 20, el posible origen de la falla respiratoria es pulmonar o si es menor a este valor, el origen es extrapulmonarTa mbién se utilizan teniendo en cuenta el estado de hipoventilación del paciente para establecer posibles causas de falla respiratoria

Presión arterial de Dióxido de Carbono

Nos muestra el estado de la ventilación alveolar en relación con el espacio muerto y el volumen corriente, la expansión de la caja torácica y los niveles sanguíneos de la PaCO₂ (100 mL de plasma), y refleja la concentración de éste en los tejidos, gracias a su gran capacidad de difusión

Bicarbonato (HCO₃)

Es el reflejo del estado metabólico en los gases arteriales y, cuando se requiere un sistema compensatorio, el riñón puede retenerlo o excretarlo a necesidad, utilizando la alta sensibilidad de los quimio-receptores desde el nivel de la médula renal al ácido carbónico o hidrogeniones

pH (Potencial de Hidrógeno)

Es un reflejo de la concentración de hidrogeniones en la sangre y cada fluido tiene su valor propio. En la sangre arterial se considera normal entre 7,35 a 7,45 y ante anormalidades lo clasificamos como acidosis (si el pH < 7,35) o alcalosis (pH > 7,45).

si nos
encontramos ante
una acidosis (pH <
7,35), alcalosis
(pH > 7,45) o
estado normal,
estableciendo si
el trastorno es
respiratorio o
metabólico.

Base exceso (BE)

Nos muestra el balance metabólico en los gases y se define como la cantidad de ácido requerido para llevar un litro de sangre a un pH y PaCO₂ a valores normales. Esta incrementa en la alcalosis metabólica disminuye en la acidosis metabólica en general.

 $BE \quad esperada = HCO_3 + 10 (PH - 7,4) - 24$

Brecha Aniónica (ANION GAP)

Un aumento del anión GAP en una acidosis metabólica indica incremento de la concentración de lactato, cetonas o ácidos renales en inanición o uremia, sobredosis de paracetamol, salicilatos, metanol o etilenglicol

DIF o SID (Diferencia de iones fuertes o strong ion diference)

Saturación venosa de oxígeno (SvO₂)

I valor normal oscila entre 40 a 42 mEq/L. La fórmula de una DIF ideal (disolución completa de los iones fuertes en una solución acuosa) se representa de la siguiente forma y se denomina DIF Aparente

Se define la saturación venosa como el oxígeno transportado en la sangre venosa por la hemoglobina