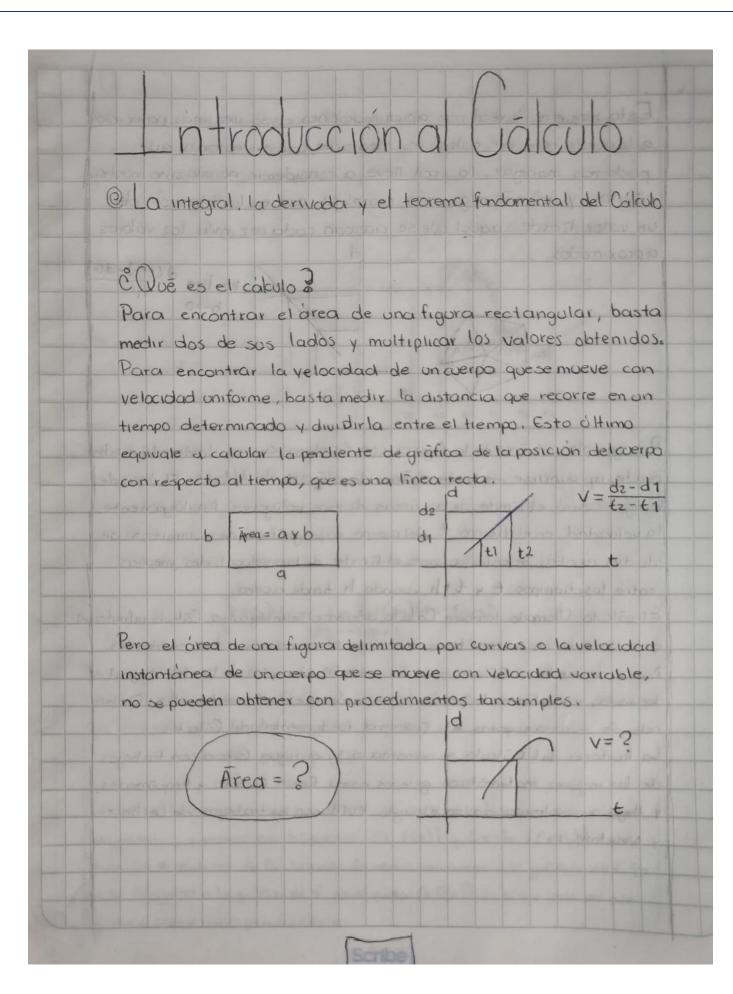


Nombre del alumno: Arguello Tovar Avilene del Rocío


Nombre del profesor: Jiménez Sergio

Nombre del trabajo: "Introducción al Cálculo"

Materia: Biomatemáticas R EDUCAR

Grado: 2do "B"

Comitán de Domínguez Chiapas a 03 de junio del 2021

Esto requiere de realizar aproximaciones cada vez más parecidas a la que se requiere calcular, mediante construcciones que podamos manejar, lo cal lleve a considerar no uno sino machos calculos, y además algo más complejo que es la obtención de un valor limite, aquel que se acercan cada vez más los valores aproximados

Area Jum A

Por ejemplo, el área de la figura con frontera curva ilustrada arriba prede aproximarse mediante el área de poligonos de N lados. El área de la figura será el límite de las áreas de esas poligonos. Analógamente, la velocidad en el tiempo t del cuerpo cuya gráfica de movimiento se ilustra arriba, se calcula como el límite de las velocidades medias

El calculo Ulamado también Calculo diferencial e integral o Calculo infinitesimal es la rama de las maternaticas que surge al considerar estos problemas.

Para su desarrollo el Calculo necesita ever los conceptos de limite integral y derivada, y establecer la profonda relación que existe entre ellos. Dicha relación se conce como el Teorema fundamental del Calculo.

entre los tiempos t y tth, coando h tiende acero.

La Historia del Cálculo se remonta a la antigua Grecia con trabajos de los mejores matemáticos griegos como foron Eudoxo y Arquimedes, y llega a su culminación en el siglo XVIII con los trabajos de Leibniz y Newton. I

La integral La integral de una función f(x) en un intervalo [a,b] se define de manera que corresponda al área bajo la gráfica de la función entre los puntos a y b del eje horizontal y se denota por: S Faxidx. $\sum_{n=1}^{5} f(s_n)(x_n-x_{n-1}) = 8.661$ La definición formal se hace a traves de un timite. Se considera una participación del intervalo [a/b] que consiste de purtos [Xo, X, Xz, ... XN] tales que a = Yo < X1 (Y2 L... LYN = b. En cada intervalo [xn-1, Yn] se escage un punto sa. La integral se define como el limite de las somas de los productos de los valores f (Sn) y las longitudes Xn-Xn-7 de los intervalos [nn-1, xn], cuando la participaciónse hace cada vez más fina, es decir, cuando el muximo de las longitodes Xn - Xn-1 tiende a cero. En simbolos, $\int_{\alpha}^{b} f(x) dx = \lim_{n \to \infty} \sum_{n=1}^{N} f(s_n)(x_n - x_{n-1})$ La derivada La derivada de una función f(x) en un punto y se define de manera que coincida con la pendiente de la recta tangente a la gràfica de f en x y se denota por dr o por f'(x) La definición formal se hace a través de un limite. Seconsideran todas las rectas que pasan por los puntos (x, f(x)) y (x+h, f(x+h)) donde h es un # distinto de D. Se trata de rectas secrantes a la grafica de f. La recta tangente a la grafica de f en en ponto (x, F(x)) es la que pasa por ese punto y tiene como pendiente a:

$$\frac{df}{dx} = f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

La velocidad instantanea de on coerpo en movimiento se define como la derivada de la posición X C+) del coerpo como forción del tiempo

$$v(t) = \frac{dx}{dt} = \lim_{h \to 0} x(t+h) - x(t)$$

Teorema fondamental del cálculo.

 $S_1 \neq f$ son dos fonciones tales que $f(x) = \frac{dF}{dx}(x)$ para toda

x en un intervalo Ca,bJ, entonces $\int_a^b f(x)dx = F(b)-F(a)$.

Otro enunciado equivalente de este feorema dice que si f es una función definida en un intervalo Ca,bJ y de define

$$\mp (x) = \int_{a}^{x} f(t) dt$$

entonces dF = f(x) para x en [a,b].

El teorema dice que, en cierto sentido, la integración y la derivación son operaciones inversas.

Gracias a este teorema, el Calcolo permite obtener resultados importantes. Per ejemplo, si concernos la velocidad de on coerpo en todo momento, y su posición inicial i podemos saber su posición en todo momento. También podemos calcular facilmente el área bajo la gráfica de una fonción f(x) si encontiamos una función F(x) cuya derivada sea f.

Bibliografía León, J. L. (s.f.). <i>Objetos UNAM</i> . Recuperado el 03 de junio de 2021, de Introducción al Cálculo: http://objetos.unam.mx/matematicas/leccionesMatematicas/03/3_000/index.html