

Nombre del alumno: Julián Santiago López

Nombre del profesor: Sergio Jiménez Ruiz

Nombre del trabajo: Reporte de lectura "Derivadas"

Materia: Biomatematicas R EDUCAR

Grado: Segundo semestre grupo "B"

Facultad de Medicina

Comitán de Domínguez Chiapas a 11 de Marzo del 2021

DERIVADAS.

Luando calculamos la derivada de una función, la que estamos calculando es el valor de un límite que mide la razón a la que cambia dicha tunción con respecto a suvariable, respecto a la que de rivamos. Las derivadas se usan para el cálculo de velocidades, acelevaciones, optimizar funciones, y una intinidad mas de utilidades. Definición de derivadas. La derivada de la función f(x) con respecto a la vari able X, en el punto X= 0 es 8 f'(a) = 19mh - 0 f(ath) - +(a) si este limite existe. Una definición equivalente de la derivado co lo aquientes f'(a) = limx -a f(x) - f(a) La tormo correcta de olescribir la derivado de una tunción es la siguiente ad f(x) = dy (x) = D(x (x). en esta expresión quedo perfectamente patente que cotamos derivando la función f(X) respecto a la variable X. Cualquiera de las tres expresiones de la derivada con respecto ax es totalmente correcta. La función a derivar suele l'amorse f (x) o y (x). Sin embargo es muy trecvente la signiente notación 8 y'(x) = f'(x). Ambas expresiones de la olerivaida son correctas y si bien la formula anterior es la mas, utilizado por su Benullez, no queda retlejado respecto a qué variable se deriva, aunque esta implicato. Ambas no taciones con correctas, pudiendo afirmar que: f(x) = q f(x) = qf(x)

o que es equivalente a la siguiente expressión de pen olendo de como se llame la función f (x) o y(x) = y'(x) = dy(x) = dy(x) proceso de calculo de la derivada de una función se llama diferenciación. Siempre se derivo o dife renúa, respecto a una variable, normalmente X, de torma generica y una vez que se obtiene la derivada pustituimos en lo x el punto donde quevemos Calular la derivada, La forma de calcular la derivado usando la definición consiste en aplicar la térmula de la definición. t, (x) = 1; w + (x+ +) - +(x) Nunca se usa la definición de la derivada de una función para calcular su función derivada ya que es un proceso largo y demasiado complejo. Para calcular la derivada de una función se uso la tabla de tórmulas de derivadas junto con las reglas de derivación. Sean f(x) a g(x) dos funciones que denotamos por f y g. 1. Derivado de la suma/resta de dos funciones. (f + g) = f'+ g' La derivada de una suma / resta de dos tunuones es la suma/resta de las derivadas de estas funciones 2. Dervada del producto de dos funciones (f x g)' = f'x g + f x g' La derivada del producto de dos funciones es igual a la derivada de la primera función por la segunda sin derivar más la primera sin derivar más la primera sin derivar por la segunda derivada. Todo esto respetando la formula dada.

3. Derivada del carente de dos funciones (f) - f' g - f. g' La derivada del corrente de dos funciones es igual a la derivada del mumerador por el denominador sin derivar menos el numerador sin derivar por lo derivada del denominador, todo ello dividido entre el denominador al wadrado.
4. Derivada del producto de una constante a por una
función. (a.f) = a.f!
i lat - de tour constante
La devivada de una función por una constante es la devivada de la función por la constante
Sin derivar.
V Park de la contenta
Permite derivar una función que es composición de
Permite devivar una función que es composición de varios funciones. Matemáticamente se expresa
DOV 6
[g(f(x))] = g'(f(x)), f'(x)
La tabla de derivadas contiene las formulas de los derivadas para todos los tipos de funciono
mos frewentes
[D] D [V] - K E/(V) - D
Derryada de uno f(x) = K f'(x) = O
0-11-1-10-11-1
función elevada V=[f(x)] Y=n.f'(x).[f(x)]
a una constante

Derivada función exponencial neperiana	$A = e_{tCxJ}$	h,= f, (x)e t(x)
Derwach función exponencial	y= a(f ca)	A=t,(x)d luc
Derivado función logarítmica	y=Inf(x)	$y' = \frac{f'(x)}{f(x)}$
Derivado función Seno	y=sin(f(x))	y'=f'(x) cos(f(x))
Derwada funuda Coseno	y= cos(f(x))	y'=-f'(x) sin(f(x))
Derivado fun- ción tangente	y=tan(f(x))	$y = f(x)$ $\cos^2 f(x)$
Derwad función Potencial exponencial	y=(f(x))g(x)	y'= y g'hn (+)+9 ‡

