

Nombre del alumno:

KEYLA ELIOENAI LOPEZ VAZQUEZ

Nombre del profesor:

LIC. MAGNER JOEL HERRERA ORDOÑEZ

Licenciatura:

LIC. ENFERMERIA

PASIÓN POR EDUCAR

Materia:

BIOESTADÍSTICA

Nombre del trabajo:

RETROALIMENTACIÓN

RETROALIMENTACION

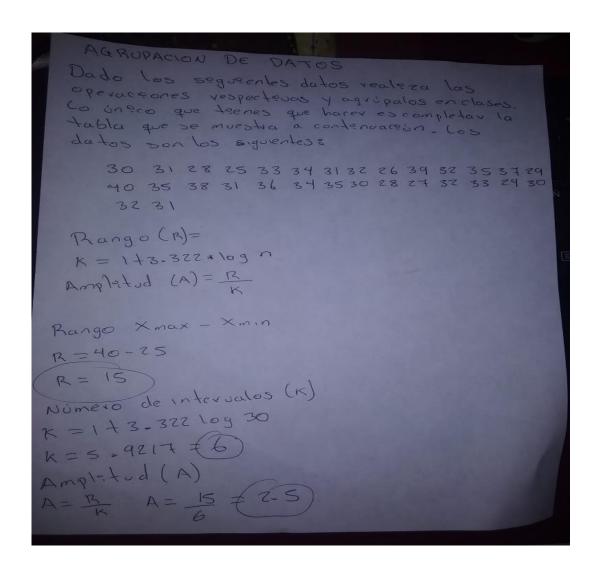
AGRUPACION DE DATOS

Dados los siguientes datos realiza las operaciones respectivas y agrúpalos en clases.

Lo único que tienes que hacer es completar la tabla que se muestra a continuación.

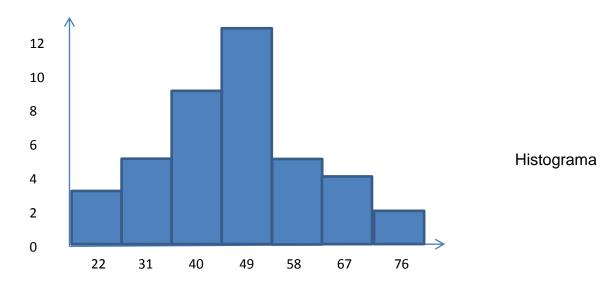
Los datos son los siguientes:

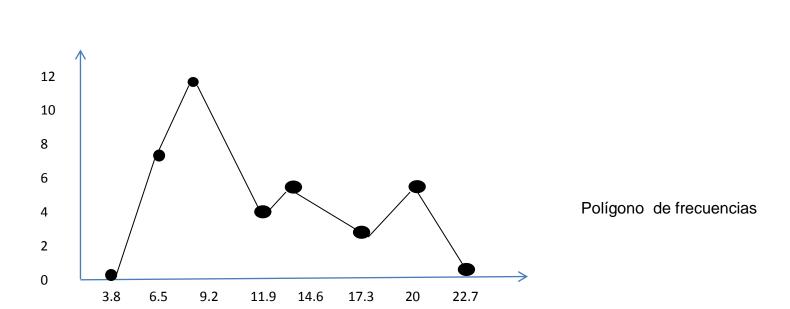
30 31 28 25 33 34 31 32 26 39 32 35 37 29 32

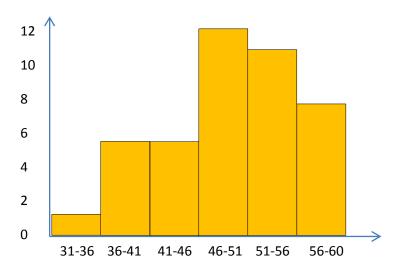

40 35 38 31 36 34 35 30 28 27 32 33 29 30 31

CLASE	f
25-28	3
28-31	7
31-34	10
34-37	6
37-40	3
40-43	1

Rango (R)=


K= 1+ 3.322*log n


Amplitud (A)=


GRAFICACION

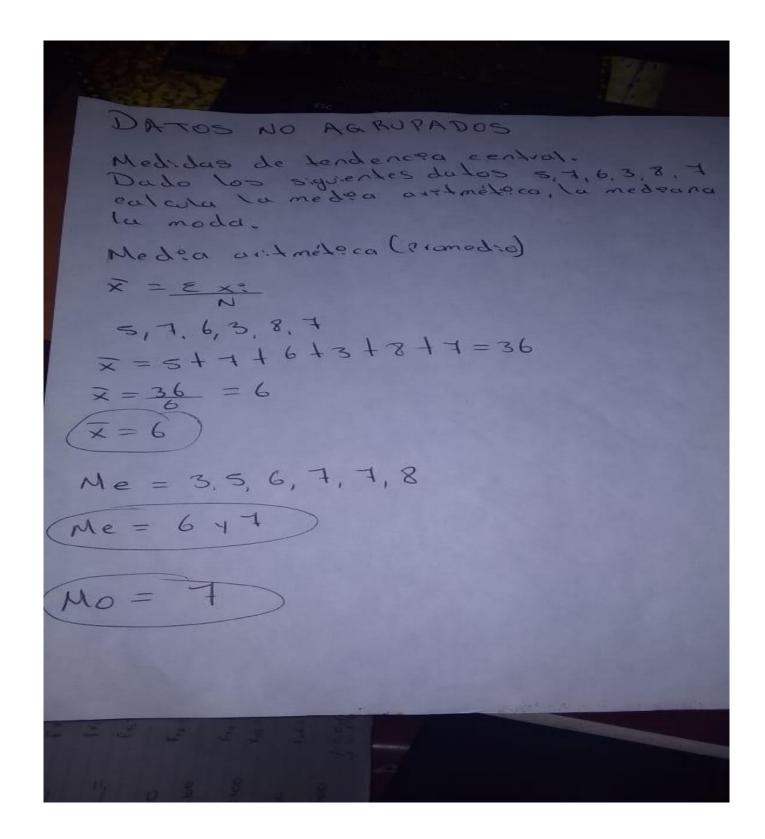
¿Qué nombre reciben las siguientes graficas?

En base a la siguiente grafica completa la tabla:

EDAD	f	X	Fr%	F
31-36	1	33.5	2.5	1
36-41	5	38.5	12.5	6
41-46	5	43.5	12.5	11
46-51	12	48.5	30	23
51-56	10	53.5	25	33
56-60	7	58	17.5	40
TOTAL	40		100	

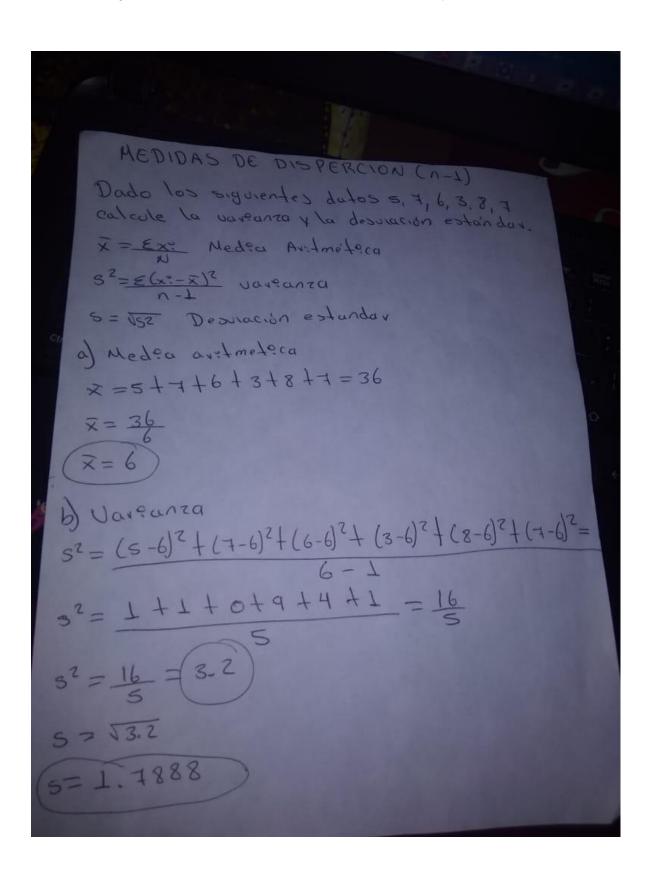
$$X_{1} = \frac{1}{2} + \frac{1}{2} = \frac{1}{2}$$

$$X_{1} = \frac{31}{2} + \frac{36}{2} = \frac{33.5}{2}$$


$$X_{2} = \frac{36+41}{2} = \frac{33.5}{2}$$

$$X_{3} = \frac{41}{4} + \frac{46}{6} - \frac{46.5}{40} = \frac{46.5}{$$

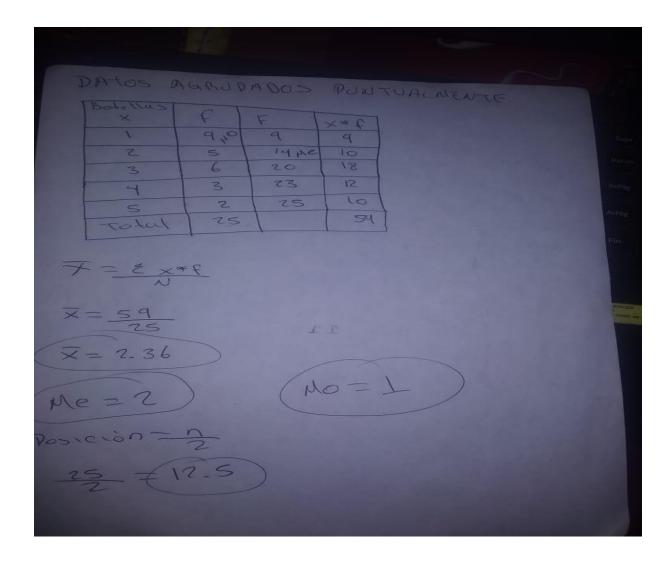
DATOS NO AGRUPADOS


MEDIDAS DE TENDENCIA CENTRAL

Dado los siguientes datos: 5, 7, 6, 3, 8, 7 calcula la media aritmética, la mediana y la moda

MEDIDAS DE DISPERSION (n-1)

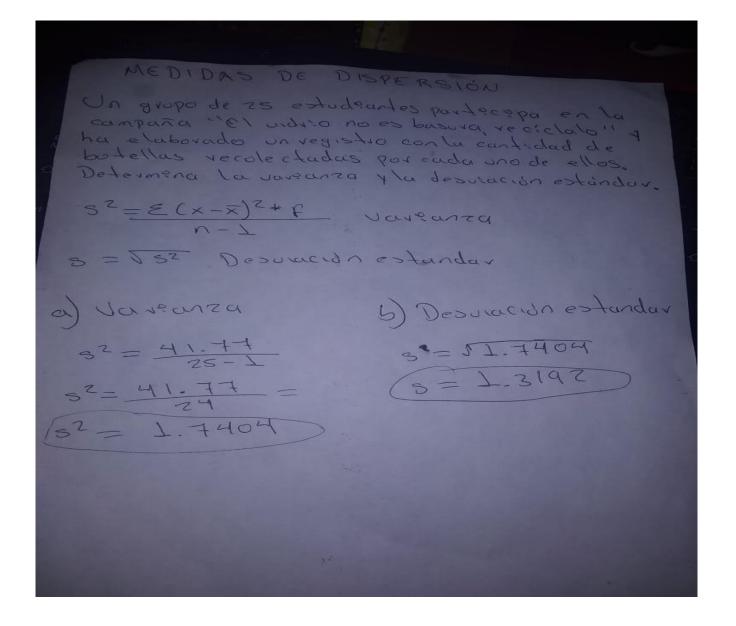
Dado los siguientes datos: 5, 7, 6, 3, 8, 7 calcula la Varianza y la desviación estándar.



DATOS AGRUPADOS PUNTUALMENTE

MEDIDAS DE TENDENCIA CENTRAL

Un grupo de 25 estudiantes participa en la campaña "el vidrio no es basura, recíclalo" y ha elaborado un registro con la cantidad de botellas recolectadas por cada uno de ellos. Determina la media, la mediana y la moda.


BOTELLAS (X)	f	F	X*f
1	9	9	9
2	5	14	10
3	6	20	18
4	3	23	12
5	2	25	10
Total	25		59

Medidas de dispersión

Un grupo de 25 estudiantes participa en la campaña "El vidrio no es basura, recíclalo" y ha elaborado un registro con la cantidad de botellas recolectadas por cada uno de ellos. Determina la varianza y la desviación estándar.

BOTELLAS (X)	f	X*f	(X-X)2	$f*(x-\overline{x})$ 2
1	9	9	1.85	16.65
2	5	10	0.13	0.65
3	6	18	041	2.46
4	3	12	2.69	8.07
5	2	10	6.97	13.94
TOTAL	25	59		41.77

CUESTIONARIO (VER ANTOLOGIA PAG. 9-16)

1. ¿Es una rama de la estadística que se ocupa de los problemas planteados dentro de las ciencias de la vida, como la biología, la medicina, la enfermería, entre otras?

R= LA BIOESTADÍSTICA

2. ¿Fue El primer médico que utilizó métodos matemáticos para cuantificar variables de pacientes y sus enfermedades?

R= PIERRE CHARLES-ALEXANDRE LOUIS (1787-1863)

3. ¿Hicieron los primeros mapas epidemiológicos usando métodos cuantitativos y análisis epidemiológicos?

R= LOUIS RENÉ VILLERMÉ (1782-1863) Y WILLIAM FARR (1807-1883)

4. Realizo los primeros trabajos Bioestadísticas en enfermería a mediados del siglo

XIX?

R= FLORENCE NIGHTINGALE

5. ¿Qué es la estadística descriptiva?

R= COMPRENDE LA PRESENTACIÓN, ORGANIZACIÓN Y RESUMEN DE LOS DATOS DE UNA MANERA CIENTÍFICA EJEMPLO: LAS TABLAS, LOS DIAGRAMAS DE BARRAS O LOS GRAFICOS SECTORIALES

6. ¿Qué es la estadística inferencial?

R= SE BASA EN LA TEORÍA DE LAS PROBABILIDADES Y TRABAJA CON LOS DATOS QUE LE PROPORCIONA LA ESTADISTICA DESCRIPTIVA.

7. Menciona un ejemplo de variable cualitativa

R= PUEDEN SER DICOTÓMICAS O POLITÓMICAS, EJEMPLOS: SEXO , ESTADO CIVIL, PROFESIONALES DE LA SALUD

8. Menciona un ejemplo de variable cuantitativa

R= EJEMPLO: NÚMERO DE HIJOS, PESO, TALLA

9. ¿Que representa una gráfica?

R= REPRESENTA DATOS GENERALMENTE NÚMERICOS, MEDIANTE RECURSOS VISUALES (LÍNEAS, VECTORES, SUPERFICIES)