

UNIVERSIDAD DEL SURESTE

ESCUELA DE MEDICINA

CUADRO COMPARATIVO

BIOLOGÍA MOLECULAR EN LA CLÍNICA

CATEDRÁTICO: HUGO MIJANGOS NAJERA

ALUMNO: MARIANA CATALINA SAUCEDO DOMINGUEZ

8° SEMESTRE GRUPO "A"

COMITÁN DE DOMÍNGUEZ, CHIAPAS, 04 DE NOVIEMBRE DEL 2020

CUADRO COMPARATIVO DE NOTHERN BLOT, SOUTHERN BLOT, PCR Y WESTERN BLOT

TÉCNICA	PCR	SOUTHERN BLOT	NOTHERN BLOT	WESTERN BLOT
DESCRIPCIÓ N	Es una técnica desarrollada en 1986 por Kary Mullis, es la amplificación de ADN in vitro por medio de la polimerización de cadena de ADN usando un termociclador.	Es un método de BM, que permite detectar la presencia de una secuencia de ADN en una mezcla compleja y para ello se usa la electroforesis en gel de agarosa.	Es una técnica utilizada para patrones de expresión de un tipo específico de molécula de ARN como comparación relativa entre un conjunto de diferentes muestras de ARN.	Es una técnica analítica usada para detectar proteínas especificas en una muestra determinada.
PROCESO	Incluye 3 pasos que se repiten 25 veces o más; -desnaturalización: separación de la doble hebra de ADN a una temp de 25°C-95° por 15-40 segs . Apareamiento: los cebadores "primers reaciona n con la hebra sencilla del ADN y se pega a lugares específicos (se baja la temperatura) Polimerización: una polimerasa de	Para realizarlo primero es la purificación del ADN, tratar con la enzima de restricción, luego es la electroforesis en gel de agarosa, desnaturalización con solución alcalina, transferencia a membrana de nitrocelulosa, incubación con sonda marcada, lavado del exceso de	comienza con la extracción del RNA de una muestra, son separadas por electroforesis en gel y son transferidas a una membrana de Nailon por capilaridad o un sistema de transferencia al vacío, después del marcaje de la	una hoja de papel especial de nitrocelulosa (blotting). Las proteínas retienen el mismo patrón de separación

	ADN extiende los primers y coloca dinucleótidos trifosfatados de 5'a 3'	, ,	RNA en la membrana y esta se lava para asegurar que la sonda se ha unido específicament e.	una con su proteína específica, este tiene unida una enzima o un colorante. La localización del Ac se revela mediante la incubación con sustrato que modifica al colorante o que la enzima transforma en un producto coloreado.
UTILIZACIÓ	Detección de agentes infecciosos; hepatitis B y C, VIH, VPH, y otros, análisis de ADN de cualquier organismo vivo o muerto, mutagénesis dirigida, investigación forense, etc.	Detección del tamaño y cantidad de un fragmento de ADN de interés. Elaboración de huellas genéticas, estudio de mutaciones estructurales (traslocaciones, deleciones, inserciones, inversiones), detección de secuencias adquiridas.	Detección del tamaño y numero de transcripcione s. Permite observar un patrón particular de expresión genética entre tejidos, órganos, estadios del desarrollo, niveles de estrés ambiental, infecciones causadas por	Examinar cambios a niveles proteicos. Es una técnica empleada para el análisis individual de proteínas en mezcla. Se usa para detección de enfermedade s inflamatorias, prueba de VIH, confirmar

			patógenos y durante el curso del tratamiento de las mismas, muestra sobreexpresió n de oncogenes y desregulación de genes supresores tumorales en células cancerosas.	encefalopatía, enfermedad de Lyme, oncogenes.
VENTAJAS	-De una muestra pequeña de ADN se puede obtener cantidades considerables -El producto se puede usar para clonar, secuenciar y analizar -Se puede amplificar ADN de cualquier organismo vivo o muerto -Alta sensibilidad -Alta especificidad -Rápida	cuantificar tamaño -Permite cuantificar	-Detecta pequeños cambios en la expresión de genes que los microarrays no pueden identificar, - La técnica puede ser fácilmente evaluada, - Nos permite reconocer el análisis de mutaciones y alteraciones de RNAm de enzimas y en la regulación de la expresión génica de marcadores	-Alta sensibilidad -Diagnostico eficaz -Diagnóstico temprano -Múltiples muestras y tipos de estudio

			moleculares de células leucémicas humanas	
DESVENTAJ	-Se Necesitan primers específicos que sean complementarios al fragmento que se desea sintetizar -La polimerización puede tener errores al sintetizar el ADN, - Puede contaminar se con otro ADN	Técnica lenta que requiere grandes cantidades de ADN	-Degradación de la muestra por ARNasas endógenas de la muestra o a través de la contaminación ambiental, -Costo elevado, -La reproducibilid ad de los datos no siempre es consistente, -Su resultado depende de la sonda que se utilice, -Se requiere mucha masa de ARN	- Costo eleva do - Variabilidad reaccional en las bandas según el ensayo, tipo de muestra, condiciones técnicas - Problemas en las proteínas de fácil degradación - Es tardado

Referencias bibliográficas

• Duran, L., Trapero, C., Sánchez, C., Pérez, D & Martínez, B. (2010). "Aplicación de las técnicas de biología molecular en oncología". Madrid, España.