

UNIVERSIDAD DEL SURESTE ESCUELA DE MEDICINA

BIOLOGÍA MOLECULAR EN LA CLÍNICA

CUADRO COMPARATIVO DE NORTHERN BLOOT, SOUTHERN BLOOT, PCR, WERTERN BLOT

CATEDRÁTICO: QUÍMICO NAJERA MIJANGOS HUGO

ALUMNO: MARTÍN PÉREZ DURÁN

GRADO: 8 GRUPO: A

COMITÁN DE DOMÍNGUEZ, CHIAPAS, 05/11/2020

CUADRO COMPARATIVO

	NORTHERN BLOT	SOUTHERN BLOT	PCR	WESTERN BLOT
	-Detecta pequeños cambios en la	-Alta sensibilidad y especificidad.	-Pequeña muestra de ADN se obtiene	-Alta sensibilidad, y especificidad.
	expresión de genes que los microarrays	-Alta serisibilidad y especificidad. -Detecta 1 molécula de ADN de	la cantidad necesaria a estudiar.	-Diagnóstico eficaz temprano.
	no pueden identificar.	HPV por célula.	-Se puede utilizar para clonar,	-Múltiples muestras y tipos de estudio.
Ventajas	-Muestra de ARN requiere un mínimo de		secuenciar y análisis.	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Ventajas	procesamiento.		-Se puede amplificar el ADN de	
	-Permite reconocer el análisis de		cualquier organismo vivo y muerto.	
	mutaciones y alteraciones del RNAm.			
	-Degradación de la muestra por	-Procesamiento largo y difícil.	-Se puede reproducir solamente parte	-Costo elevado.
	ARNasas endógenas de la muestra o a	-No permite detectar secuencias de	del genoma.	-Problema en las proteínas de fácil degradación.
	través de la contaminación ambiental.	ADN de tipos desconocidos.	-Se necesitan ``primers`` específicos	-Es tardado (inadecuada trasnferencia) bandas
Desventajas	-Costo elevado.		que sean complementarios al	sesgadas, descoloridas o incluso múltiples.
	-Resultado depende de la sonda		fragmento que se desea sintetizar.	
	utilizada.		-puede tener errores al sintetizar el	
	-Se requiere aproximadamente 20ug de		ADN.	
	ARN total.	Floatroforcoio	-Puede contaminarse con otro ADN.	Floatroforacio
Separación	Electroforesis	Electroforesis	Electroforesis	Electroforesis
Molécula	RNA	DNA	ADN Y ARN	Proteína
detectada				
Preparación	Aislamiento de RNA	Extracción enzimática del DNA	Extracción ADN	Extracción de proteína
de la muestra				
Etiqueta de la	Radiomarcado, enzima	Radiomarcado, enzima		Enzima
sonda				
	Mostrar sobreexpresión de oncogenes y	Puede ser usada para el	Detección de agentes infecciosos	Detecta proteínas específicas en una muestra
Aplicación	la desregulación de genes supresores	diagnóstico molecular de algunas	como: Hepatitis B y C, VPH, VIH.	determinada.
Aplicación	tumorales en c. cancerosas.	enfermedades génicas, ejemplo de	Análisis de ADN de cualquier	
		ellas serían el Síndrome de	organismo vivo o muerto.	
		Angelman, Síndrome de Prader-		
		Willi y Síndrome X frágil.		

Referencia Bibliográfica

- ➤ Michelle Dotzert (2019). Southern vs Northern vs Western Blotting Techniques. Lab Manager. https://www.labmanager.com/insights/southern-vs-northern-vs-western-blotting-techniques-854.
- http://ufq.unq.edu.ar/Docencia-Virtual/BQblog/Electroforesis-western-blot-Elisa.pdf.
- https://www.gfmer.ch/Educacion_medica_Es/Pdf/Analisis_genetica_molecular.pdf.